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Abstract 2. Performance Modeling Goals

The purpose and goals of performance modeling for There are four primary goals of performance modeling
multiprocessor systems using a token-based methodology this methodology. First, system sizing can be accom-
in VHDL are discussed. Following this motivation, a frame-plished including the number and type of processors, mem-
work for performance modeling is described, whichories, and buffer elements. Second, network architecture
involves modeling hardware and software at different levelsonsiderations delve into the system’s network topology
of abstraction; the scope of this paper primarily addressdg.g. shared bus, ring, cube). Link bandwidths and protocol
the high profile performance model. A commercial toolrequirements are also explored under network architecture
supporting this modeling framework is then introduced selection. Third, hardware/software mapping includes
The discussion continues with an overview of the real timapplication partitioning and allocation, task scheduling and
infrared search and track algorithm, and our system desigiow control, and assessing microprocessor communica-
problem. Preliminary results of our performance modelingions. Fourth, concept verification deals with processor and
efforts and validation via code profiling is summarized, andink throughput and utilization. Note that performance

future plans are described. modeling itself is a tool for satisfying these goals, and as
such may also be useful in other steps of the top-down
1. Introduction design methodology.

Performance modeling plays a key role in the RASSP: At the perfqrmance level, interaction between hardware
based top-down design methodology [1, 2. It immediatel and softwqre is ane_lly_zgd. Software tasks are rgp_resented as
follows the initial design steps Whicﬁ in.clude system){h-e execution of primitives on a processor. This is accom-

) , ; : ished by modeling each primitive as a simple delay rather
requirements capture, algorithm and functional design, a”ﬂan a sequence of assembly instructions. Performance
data/control flow design. The results of the performanc odels are not concerned with the actual data but rather

modeling step can be used to refine the design by optionawith the flow of data through the system. A data type,

revisiting the preceding steps. Nonetheless, performangg, ., 55 4 token [5], abstractly represents this flow of data.

modeling does drive the succeeding steps in the deS"qfiﬁerformance models allow the designer to explore the what

methodology, including behavioral virtual prototyping, (¢qtyare task), where (processor element) and when
detailed hardware and software designs, and final prototyét-oken) of a system design at a high abstraction level. The

ing. A primary benefit of performance modeling is that theOutlout of performance modeling is an efficient system

increased effort it calls for in the conceptual phase of thgrchitecture solution, which drives behavioral virtual proto-

ggsé?g %rgritloyf :;“évirtser;he H.Sckh ?]22 legcbeeémeoggzﬁ igdtl[‘gping, the next step in the design methodology. To more
velop y » Wh v asily assess this performance modeling approach, this

I\h{ﬁg%hzl;ért:': g;tfrcc;(z%gg%(;{;ﬁ# [41: prﬁ/:s?sk?é{gilg ffort has limited its scope to the performance modeling of
1€ sy P Y g, syn! ’ §terministic, synchronous algorithms.
design, and documentation because of its inherent suppor
for representing systems at different levels of abstraction. . .
P g5y 3. Levels of Modeling Abstraction

The general structure of performance modeling is illus-
trated in Figure 1. The algorithms, implemented in soft-
ware, are decomposed into separate cooperating tasks.
This work was performed by Sanders, a Lockheed Martin Company, aBrocessor elements are characterized by descriptions of
phart of thle Sandersh RAESP program ucn)derlcolztract Noog14-93-Ct-1,2172tﬁeir instruction sets, memory hierarchies and token inter-
the Naval Research Laboratory, 4555 Overlook Avenue, SW, Washingto ; ; _
DC 20375-5326. The Sponsoring Agency is: Advanced Research Projeggces' Tokens mOd.eI the data ﬁommumgatlon between pro
Agency, Electronic System Technology Office, 3701 North Fairfax Drive, C€SSOI'S. Communication mechanisms between ijOCESSO.I’S
Arlington, VA 22203-1714. The Sanders RASSP team consists of Sander@fe represented as abstract blocks, but can be realized using
Motorola, Hughes, and ISX. a variety of bus protocols and topologies. Finally, func-




Table 1: Aspects of performance modeling for each abstraction level

Major Aspect

High

Medium

Low

Software
Task Modeling

time delay estimate

partial VHDL implementation
software tasks with time delay
estimates (HW/SW Codesign)

pffull VHDL implementation of
software tasks with time delay
estimates (HW/SW Codesign)

Processor
Characterization

high level DSP
primitives,
small set of simpli-

low level DSP primitives,
medium to large instruction set

detailed instruction set,
context switch support,
detailed cache modeling

fied instructions

Network
Communication

generic
point-to-point
communications

bus topology
token I/O
bus I/O instructions

bus protocol
(VME, Myrinet, PCI, Raceway,
SCl, etc.)

less than 1% of
input sample rate

10% to 100% of
input sample rate

1% to 10% of
input sample rate

Token
Resolution

refined models at the medium level, and investigate a hand-
ful of models at the lowest level. However, for a particular
project, it may be appropriate to use just one profile level,
or combine different levels of abstraction from these major
aspects for a customized performance model. The right
approach depends largely on the time, budget, availability
of modeling resources, and purpose of the study. This
framework is intended as a set of flexible guidelines to raise
issues of importance in developing performance models.
The scope of this paper discusses primarily our results of
applying the high level profile performance modeling to our
system design problem.

SW Task
Modeling

SW-to-HW
Mapping

HW Topology

4. Environment for Performance Modeling

Through RASSP-sponsored research, a generic, parame-
terizable library of VHDL performance models, called the
Figure 1: General structure of performance modeling Performance Model Library (PML) [5, 6, 7], was devel-
tional blocks of the target algorithm are mapped onto speaped. PML serves as the foundation for a new modeling
cific processors. environment called Cosmos (formerly the Performance

In this study, a flexible performance modeling frame-Modeling Workbench (PMW)) [8], developed by Omni-
work to accurately and rapidly explore the architecturaview, Inc. [9]. Cosmos uses elements from PML to model
design space is used. It consists of the following four majoprocessors, communication elements, 1/0 devices, and soft-
aspects: software task modeling, processor characterizatiof@re tasks. This library contains many commonly used
network communication, and token resolution. Using highmodels, and new customized models can be created by
medium, and low levels of abstraction for each of thes&odifying the parameters of these library elements.
aspects, three corresponding performance modeling profil&eneath each model or component is VHDL code or a flow
(high, medium, and low) have been developed, as shown ghart modeling the behavior, which is tuned with its avail-
Table 1. The low level of abstraction requires an increase@le parameters. For example, a processor is modeled by
model development and simulation time, with the benefit oppecifying its various attributes including information about
more accurate models and a commensurate higher confis instruction set, memory and cache architecture, and
dence in the integrity of the proposed architectural desigrPerating system, as shown in the Cosmos graphical user
The high level of abstraction yields quicker results with lesénterface (GUI) in Figure 2. Hardware architecture topolo-
effort, but typically does sacrifice the accuracy of thegies are composed by creating instances of the hardware
results. In an ideal situation, one would start with a higiffomponents and by setting or modifying their parameters as
level prof”e to exp|ore many options |dent|fy candidatenecessary. Finally, the hardware components are connected
architectures, explore promising candidates with moréogether to complete the hardware model.

Interconnection
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Figure 2: Processor modeling parameters

Software is modeled separately from the hardware. This to reliably detect, locate and track infrared-emitting
software tasks implementing the algorithm are specifie@bjects. The presence of background radiation and other dis-
graphically to establish their precedence and dependenterbances increases the difficulty of this task. Valid targets
relationships. The software design editor captures the targate modeled as point-source objects in highly structured
algorithm graphically. Within Cosmos, software tasks arébackground at ranges beyond five kilometers. IRST systems
individually modeled using VHDL or a flow chart. Once are considered an alternative to radar in certain cases due to
both hardware architectures and software tasks are specifig¢deir passive nature and anti-stealth capability. The charac-
the software tasks are mapped onto the processor elemertexistics of an IRST system include a wide field of view, with
After the mapping is complete, Cosmos generates a VHDtoverage up to 360 degrees in azimuth and up to 90 degrees
model of the system, which is then simulated by any IEEEn elevation, for an airborne system. As a result, typical
compliant VHDL simulator. As the model is simulated, aframe times on the order of one to ten seconds and typical
transcript file containing the results of the simulation is propixel rates of one million pixels per second are encountered
duced. The simulation times in this effort ranged from one taue to the large images these systems generate. Due to the
eighteen minutes. The results are then read, interpreted, ahigh volume of pixels and the priority of detecting small tar-
displayed by Cosmos. The Cosmos GUI supports variougets, IRST systems depend on automation to screen false
system and component level views of the results, facilitating
the analysis of system performance (throughput, latency, uti-
lization, etc.), identification of bottlenecks and over-designs,

4 K _ Library

and comparisons of designs. In short, Cosmos provides the
GUI, for creating the models and interpreting the simulation
results, as well as the library containing the hardware and €OSMOS . Transcript
software models. A separate VHDL simulator provides the VHDL File File
execution environment which performs out the system simu- Design — VHDL —
lation. This design process is summarized in Figure 3. — Stmulator —
5. IRST Algorithm and the Modeling Problem Toots " N

Infrared Search and Track (IRST) systems are a class of

passive military infrared systems. The goal of such a system Figure 3: Cosmos design process



alarms. Most current research is focused on signal process- reu: g

ing to detect targets in the presence of severe clutter [10]. e -
The signal processing for IRST systems typically consist 5 * f;:\ il

of two components: a detection processor and a track proces- ) Input: L2 bitz

. . . Local Wean: 20 bilz
sor. The detection processor performs spatial processing on Cutput: L6 bits

the input image at the required high data rate and thresholds mon

the result to pass a manageable number of threshold exceed- LI

ances (detections) to the track processing function. The track e 2:_, ,2:_,:(’ ~h =)
processor operates on the detections from each frame to gen- -

erate tracks of temporally persistent detections and evaluates Figure 5: DC removal block diagram

the validity of a particular track being target based. This per- . .
formancéymodeﬁing effort focused %n n?odeling the im&e_erPC_and_ the C80. At this level of performance modeling,
mentation of the detection algorithms using 2D and 301€ differing processor performance is captured by their
spatial processing to reliably detect infrared-emittingreSp.eCt'Ve processor characterizations, discussed further in
objects. As the subsequent discussion will reveal, these algdction 7-
rithms require a large amount of computational power (o
the order of 100-1000 operations per pixel). Given thi-1. DC Removal
requirement, a multiprocessor system is necessary to processThe first functional block in the 2D IRST algorithm is the
the data in real-time. Performance modeling will be showDC removal block. This function uses a 2D finite impulse
to be a powerful aid in exploring the architectural designresponse (FIR) filter with unity coefficients to eliminate the
space of a high performance multiprocessor system. DC component from the image. Figure 5 shows a block dia-
As a vehicle for demonstrating this performance modelgram of this filter. Since the filter is really just a 13 x 13 sum-
ing approach, the detection portion of the 2D IRST algomation window, it can be implemented very efficiently in a
rithm is being investigated for implementation on twosystolic fashion. The systolic implementation slides a sum-
candidate processors, the PowerPC 604 [11] and the Texasation window down the columns of the image. Pixels
Instruments TMS320C80 [12]. The scope of this paper isvithin the filter window are summed along the rows, and
limited to high profile performance modeling. As depicted ineach row sum is kept in storage. Adding these row sums pro-
Figure 4, the 2D IRST consists of three main stages: a D@uces the filter output. The systolic nature of this approach
Backg o Narmalize | Trrhald Procs has two consequences. First, the computational and memory
m access workloads are constant regardless of the summation
Pemont |—ge| T i window size. It is the size of the storage area that varies with
r— e o window size. Second, there is a region around the edge of the
! image where the filter output is invalid because a part of the
— el filter does not overlap the image. The following computa-
Bstmstion T et tional and memory access workload per pixel for the DC
Removal filter is shown in Table 2.

Bstimator

K facter

Figure 4: 2D IRST detection block diagram Table 2: DC removal filter workload

removal front end, a clutter estimation and spatial filter sec- Workload Estimate
tion, and a background normalize/threshold stage where
detections are made. The algorithm was prototyped and 5 adds
functionally verified using the Synchronous Dataflow
domain of Ptolemy [13], which is a C++ based simulation 4 loads
environment. Our system problem was to evaluate candidate
implementations using high profile performance models.

These implementations included information on the number
of processors, hardware topology, and algorithmic mapping.2. Clutter Estimator
needed to handle the throughput of 1.6 Mpixels/second,

using architectures consisting of either the PowerPC or t The next software task is the clutter estimator and spatial
9 9 hrﬁter. The clutter estimator performs a local standard devia-
TMS320C80 processors.

tion estimate and a filter select operation. The local standard
. deviation estimate is identical to the summation window
6. Software Task Modeling except it processes the absolute value of the input image. The
In high profile performance modeling, the performancéilter select uses this estimate to categorize the clutter into
model is assumed to be derived from a paper specificatioane of four clutter categories (none, low, medium, high)
Hence, the computational and memory access requiremenising three thresholds. This selection may be implemented
of each functional block were estimated from this specificawith just two branches per pixel and needs the following
tion. The same software task models were used for the Powgsources, shown in Table 3.

3 stores




Table 3: Filter select workload

Workload Estimate

3 adds

6 branches

1 load

1 store

Table 4 has the total clutter estimate workload require-
ments, which is the sum of the local standard deviation esti-

mate and filter select.workloads.

Table 4: Clutter estimate total workload

Workload Estimate

7 adds

4 |loads

8 branches

3 stores

1 negate

6.4. Background Normalizer/Threshold

The final functional block, the Background Normalizer/
Threshold Process, as shown in Figure 6. It includes two

13z 13 Qotet Window

)s: )i | SPF |z -ty —4)

—t it

Thiexhol
, [ _
_ \SPR & Sealel Dtactions
Clip z
Tz TInnel Window =

& &
3 30 ISPF (248 —5) | Thieshold Constent

Cine's Cotopleros it Ractifi=l

5FFizg) 15PHz,

Rizy1= Szl PRz y1> 0
Rizg1=15FFzy1 - LSFF= O

I8Pz

Figure 6: Background normalizer/threshold

summation windows which each have the same loads as the
DC removal block. A total breakdown of computational and
memory access workloads for each component of the Back-
ground Normalize/Threshold Process per pixel is shown in
Table 6.

Table 6: Background normalize / threshold
total workload

6.3. Spatial Filter Workload Estimate
The output of the filter select drives the spatial filter, 11 adds
which applies one of four 7 x 7 filter kernels. The adaptive
spatial filter performs two tasks: (i) spatial filtering and (ii) a 6 loads
scale/clip operation. Since the kernels possess quadrature-
mirror symmetry, each kernel has just sixteen unique coeffi- 5 stores
cients. By pre-adding the spatial data and then multiplying 4 branches
by these coefficients, the computational load can be reduced
to 48 adds and 15 multiplies. The total workload requirement 1 multiply
for the spatial filter per pixel is listed in Table 5.
1 negate
Table 5: Spatial filter total workload 1 shift
Workload Estimate 1 AND/OR
48 adds
6.5. Total Workload
49 loads The above approximations of the 2D IRST algorithmic
15 multiplies workload were used to specify the software tasking models,
and have been totaled in Table 7. Note that a generic instruc-
2 stores tion set has been employed at this level, e.g. load, add, multi-
- ply. At lower levels of abstraction, performance models may
1 shift contain sufficient instruction set detail to allow modeling the
1 AND/OR softw_are tasks more accurately. It is importar_lt totry to _keep
the high-level software task models as generic as possible so
1 branch they can be easily translated to different target architectures.
This aspect of high-level software task models enable the

architectural design space to be explored rapidly.



Table 7: 2D IRST algorithm total workload Table 8: PowerPC high level processor
instruction set

Workload Estimate
71 adds Instruction Cycles igg; rr- Memory Access*
63 loads IADD 1 2 fetch 4 | bytes
16 multiplies IMLT 1 1 fetch 4 | bytes
13 stores LOAD 1 1 fetch 4 | bytes, fetch
13 branches 4 D bytes
2 negates STORE 1 1 fetch 4 | bytes, storg
4 D bytes
2 shifts
BRANCH 1 1 fetch 4 | bytes
2 AND/OR
IOP 1 1 fetch 4 | bytes

7. Processor Characterizations tion was drawn from the cache hit rate analysis performed on
In this section, the various instructions used to model botthe SPEC92 benchmarks [14]. The potential dangers in gen-
the algorithm and the instruction sets of the processors aggalizing the cache hit rate must be stressed, however. Hit
discussed and explained. Due to the relative SImp“CIty of th%tes are extreme|y dependent on cache Size, data dependen-
algorithm and the limited number of ways it can be particies and algorithm implementation. In high profile perfor-
tioned on the PowerPC and C80, no operating system ovafrance modeling, this is a unavoidable since no software
head was considered directly. However, a 10% softwargode is assumed to exist from which cache hit rates can be
overhead factor was used to represent initialization and |O%ten’nined_ Main memory access times are determined in

setup stages of the software tasks in both cases. terms of the number of clock cycles. In this example, it takes
o six clock cycles to access a byte in main memory. Of course,
7.1. PowerPC Processor characterization different bus speeds are available with a corresponding

For this first case, PowerPC 604 processors are the elfpact on system cost. Bus speed should be considered an
ments which perform the 2D IRST processing workloadimportant variable in assessing the performance of a proces-
Different multiprocessor configurations were explored toSOr since efficient memory hierarchy often translates directly
arrive at a potential solution. In the process, performancito improved processor performance.

bottlenecks, software to hardware mappings, data traffic o
rates and the number of processors were identified. It i4-2. TMS320C80 Processor characterization

important at this level to use a simple model of the processor |n this second implementation case for the 2D IRST algo-
to simplify the replacement of different processors as well agthm, Texas Instruments TMS320C80 processors perform
to easily modlfy the software task models. For instance, Ifhe Signa| processing workload. Since the software task
parallelization becomes necessary, it should be easy to bregipdel is identical with the PowerPC software task model,
a large task into smaller parallelized portions. This is accomhe same unique instructions were identified. Similar fixed-
plished with a concise instruction set for the processor. jﬁoint instruction sets in the C80 allowed the same six high-
high-level instruction set is selected only after the task modevel instructions as in the PowerPC to also be selected. Per-
eling phase is completed. formance information on the instruction set execution is
In the 2D IRST algorithm, the following unique instruc- shown in Table 9. As in the PowerPC case, the cache hit rate
tions were identified: integer add, load, store, branch, negatgas set at 90%.
integer multiply, and, or, shift. For the PowerPC 604, the fol- The difficulty in producing an accurate high-level charac-
lowing instructions were selected: IADD, IMLT, LOAD, terization of the C80 is its unconventional configuration. The
STORE, BRANCH, IOP. The mnemonics IADD and IMLT C80 consists of one master processor (MP) and four parallel
represent integer add and multiply instructions, respectivelyyrocessors (PP), with 38 Kbytes of internal shared memory.
The IOP instruction describes the class of ALU logical operThe MP is a 32-bit RISC floating-point processor, and is
ations. Thus, six instructions were used to characterize th_%ed to coordinate the operation of the four PPs and to com-

IRST algorithm processing needs. Instruction execution pefmunicate with external devices. Each PP is a high perfor-
formance information is shown in Table 8 [11]. This infor-

mation was necessary to calculate the time delays for each
function processed on a PowerPC. * | and D bytes refer to instruction and data memories respectively. Cycles
In our examples, the cache hit rates were set at 90%. THigpresent the number of clock cycles required to execute the instruction.

value was judged a reasonable starting point. This aSSum?gperscalar refers to the number of functional units available to execute the
' peration.




Table 9: TMS320C80 high level processor support a particular architecture and mapping can be esti-
instruction set mated. These estimates can then be judged as to their feasi-
bility in being realized in hardware. More importantly, these
Super- estimates are useful in transitioning to the medium and low
scalar | Memory Access* profile performance models where communication band-
width limits are part of the models.
IADD 1 1 fetch 8 | bytes Consistent with the discussion in section 3, a relatively
coarse token resolution was used. Here, tokens were used to
IMLT 1 1 fetch 8 | bytes represent data blocks ranging from a column of 256 samples
up to 800 columns (204,800 samples). This approach is
LOAD 1 2 :g:ga g 'Dbgtf:; appropriate at this level of abstraction as it is consistent with
y the expected accuracy of the results, in addition to keeping
STORE 1 2 fetch 8 | bytes, simulation times relatively short.

store 4 D bytes

Instruction Cycles

9. Design Space Exploration
BRANCH 1 1 fetch 8 | bytes

0P 1 1 fetch 8 | bytes 9.1. Performance modeling using PowerPC-based
designs

mance 32-bit fixed point DSP. To facilitate efficient memory In this section, the progression of performance models to
traffic, the C80 also has an intelligent DMA controller, calledarrive at a viable solution using PowerPCs in a multiproces-
the transfer controller (TC), which manages all memorysor system is discussed. Various hardware configurations
transfers to and from internal memory, including cache sewere modeled by adding additional PowerPCs until a viable
vicing. multiprocessor design solution was reached. From this final

A reasonable first order approach to model the chip is tperformance model, communication traffic issues were esti-
multiply the C80 clock rate by four, corresponding to themated.
number of PPs. Since the algorithm is fixed-point, the float- The initial design uses one PowerPC 604 to run the entire
ing-point MP, which traditionally acts as a task coordinato@lgorithm, providing a lower bound on the number of proces-
anyway, is not taken into account as contributing any usabors to needed to solve the problem at the 1.6 Mpixels/sec-
processing power. However, a more reasonable assumptiond rate. Using the algorithmic and processor modeling
is to adjust the factor of four downward for three reasonsiumbers developed in sections 5 and 6, a single PowerPC
First, a clock rate increase of four implies a linear speed upas estimated to implement the 2D IRST at 140.8 Kpixels/
which is very difficult to achieve in practice due to problemssecond, just 8.6% of the required rate. Assuming a linear
such as memory and synchronization overhead [15]. Secongpeedup, at least eighteen PowerPC processors would be
the algorithm is largely sequential in nature, and not entirelyequired to perform the task. This calculation also assumes
parallelizable. Finally, the TC may become a performancéhat utilization on each processor does not exceed 80%. As
bottleneck as the amount of data transfer increases. For thesgpected, the spatial filtering task was the major perfor-
reasons, the clock rate was conservatively increased by a favance bottleneck, and its alternative implementations were
tor of three rather than four. the focus of subsequent designs.

The C80 architecture in this case study consists of a 40 A second design assumed a pipelined configuration for all
MHz C80 with a 20 MHz 64-bit bus. Thus, the processofunctions, with the spatial filter additionally being parallel-
performance model sets the clock rate at 120 MHz. Maifzed. The filter was partitioned into eight subtasks, where
memory access times were determined in terms of clockach subtask processed two of the sixteen product sums.
cycles. Eight bytes can be transferred from main memorizach of these subtasks was mapped to a single processor,
every other processor clock cycle. This rate assumes that thed a ninth task to collect and add the results was assigned to
transfer controller moves large blocks of data (128 bytesp ninth processor. The other 2D IRST functions were pipe-
This is a reasonable assumption for this image processirigged and assigned to three other processors. With a ceiling

application. of 80% utilization, this model estimated a processing rate of
608.7 Kpixels/second, 37.2% of the total processing require-
8. Network Communication and ment. In this design, the background normalize/threshold

. task became the limiting factor for higher performance as it
Token Resolution was assigned to run on just one processor. In terms of com-
In the high profile performance modeling, the networkmunication bandwidth, the eight-way partitioning increased
communication between processors is modeled as genetite peak point-to-point bandwidth to 12.8 Mwords/second.
point-to-point link with unlimited bandwidths. With this A third PowerPC design parallelized the spatial filter into
approach, there are no barriers to interprocessor communicsixteen separate subtasks (one for each unique filter coeffi-
tion. Thus, the problem is characterized as compute-boundient), with five additional subtasks to sum the results. The
By not imposing a ceiling on the communication bandwidthDC Removal task was pipelined into two subtasks, the clut-
within the models, the amount of communication needed teer estimation was pipelined into three subtasks, and the



background normalization/threshold was pipelined into threéion bandwidth is low. Two straightforward partition
subtasks, for a total of 29 processors. The utilization versuschemes will be discussed: row tiling and column tiling.
time diagram illustrates the difficulty in balancing the algo- In row tiling, each tile (section of the image) is composed

rithmic workload across the system (see Figure 7). of a specified number of rows. Column tiling partitions the
. image along columns. Because each processor will run the
GBI Wl - ol entire algorithm on the row (or column) tile, it is necessary
File View . . . .
— = to add overlap regions to each tile so that spatial filter and
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However, this partitioned algorithm solution has severe APousrpet [ 43.28
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data) is 46.4 Mwords/second. If too many processors we, — o | T
placed on a single board, bus data traffic may be prohib - —_—
tively high. Thus, this solution requires a relatively comple» = b
hardware architecture with less complex software develo] — s T o |
ment Run: column1 - Slave to Control Panel

Another approach to a potential solution is through dat
partitioning. Instead of decomposing the algorithm, the input Figyre 8: Performance profile of PowerPC partitioned
image is partitioned and processed on separate processors. data implementation model
Since the output of the processed image is detection reports,

l.e., flags declaring a specific pixel judged to be a target, thgjjization versus time for each processor in the system,
partitioned image does not have to be reconstituted. Theyeajing a maximum processor utilization of 74%.
infrequency of detection reports means output communica- Thjs column tile solution has a number of advantages over

the partitioned algorithm solution. First, its bus traffic is low,




approximately 1.6 Mwords/second versus 46.4 Mwords/sec- iRt SinE
ond. Second, software development is easier since the oNe g view

version of the code is needed instead of portions of the algo-
rithm being scattered over 29 processors in the partitioned

Wo-0z [Ju-208 O2i-30x []31-408 [ 41-502 [ ]51-602 [ |61-70% [lz z|

algorithm case. Third, this solution uses fewer processors. Time: 0 ns s+ +L3s +LGons 2,3ms

This will simplify the hardware interconnection and lower -
the cost of the system. Fourth, this solution results in lower = At | .95
latency since initial columns of the frame arriving at the first sosone. 31 [ B
tile processor are processed immediately. The partitioned /caocE 5 59542
algorithm solution must fill up its eleven stage pipeline sea0spFo [ Fo.742
before detection reports will be produced. Finally, this solu- /eaoseFL [ o742
tion uses tokens representing the data size of an entire col- | BT

umn tile. This results in dramatically fewer tokens in the
simulation yielding faster simulation run times.

The comparison between the partitioned algorithm solu-
tion and the partitioned data solution seems relatively

sraoserz (5 B0, 742

sraoserd (5 Ba, 1%

sraosers (5 £7.78%

immune to performance model inaccuracies for two reasons.| =0 E2 3k
First, improvements in performance model accuracy will sososerrp2 3.2
effect both solutions fairly evenly. If a more accurate perfor- /uaospra_Bo £ 39.301
mance model establishes faster processing times then this MMetectReport 12,352

will reduce the number of processors necessary in both solu-

tions. Second, interprocessor data traffic for the partitioned

algorithm solution is 29 times higher than the partitioned

data solution. It is difficult to imagine inaccuracies in this | _Bun:part_alg_ctio 1 e 0 @i (s
erformance model so great as to remove this disadvantage. . :

P g 9 Figure 9: Performance profile of TMS320C80

Medium level performance modeling will more rigorously artitioned algorithm implementation model
establish the validity of this 19 PowerPC multiprocessor sys- P 9 P

| = Il

| Task: fSPF19 Left—click to view token. ]

tem solution. of 1.6 Mwords/second. Thus, the total interprocessor com-
munication was 20.8 Mwords/second.

9.2. Performance modeling using TMS320C80- The column tile approach (data partitioning) yielded a

based designs much more efficient solution. The problem is set up identi-

cally to the PowerPC solution, but in this case eight proces-
Sors were necessary to process the frame in real-time. An
fBditional C80 processor was allocated to account for the
ata distribution handling necessary to distributed the col-
mn tiles. The utilization versus time for this system is

Because the software task modeling of the 2D IRST alg
rithm is the same for the PowerPC 604 and C80 cases, t
design space exploration will closely mirror that for the
PowerPC. The first performance model ran the 2D IRS

algorithm on a single C80, indicating that a single C80 CaEiepicted in Figure 10. The high processor utilizations result

process 209.2 Kpixels/second, which is 12.8% of the t0tg}om the well balanced distribution of data across the multi-
required processing power. Assuming a linear speedup, @,cessor system. The column tile solution had a number of

minimum of eight C80 processors would be required to pe advantages over the partitioned algorithm solution, as in the

form the task in real-time. As with the PowerPC, the spatighqyerpC case. However, the advantage in interprocessor
filter task was also the major performance bottleneck. communication bandwidth was less over the algorithm parti-

The second approach attacked this performance bottlgy,neq case for the C80 (1.6 Mwords/second versus 20.8
neck by partitioning the algorithm. At this point, the S'm”ar%words/second).

work done for the PowerPC was leveraged. Since each C
has more than twice the processing power of the PowerPC, P .
the expectation is that many of the processors would be sig- 10. Verification of Performance Modeling
nificantly underutilized. The results confirmed this by reveal- As a means of validating and verifying the models, the 2D
ing processor utilizations ranging from 11.0% throughlRST algorithm was implemented in C and targeted to the
35.0%, well below the 80% maximum. Two or more taskd?owerPC and the C80. In coding the algorithm, only obvious
were combined onto a single processor where possibl@nd easy optimizations were made, and no assembly lan-
reducing the total number of required processors. In doinguage was used. Individual routines as well as the entire 2D
this, it was assumed that performing multiple tasks on a sinRST algorithm were timed and profiled. The PowerPC tar-
gle processor that the single task processor utilizations weget, using a 100 MHz processor, was measured to process
approximately additive, as long as the total of 80% utilizaimages at 126.2 Kpixels/second, which is somewhat close to
tion was not exceeded. In this case, the solution turned out the 140.8 Kpixels/second rate predicted by the high profile
consist of eleven C80s, as shown in Figure 9. Similar to th@odel. For the TMS320C80, a 40 MHz processor was used,
PowerPC case, every connection between grouped softwaa@d was found to process data at 391.4 Kpixels/second, com-
tasks (interprocessor) represented the sustained data traffiared with 209.2 Kpixels/second for the model. These pre-
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Figure 10: Performance profile of TMS320C80
partitioned data implementation model

dictions are reasonably close for the purpose of the high
profile modeling. It is important to keep in mind that the pri-g
mary goal of high profile modeling is for relative comparison
among alternatives, which are investigated more closely in
medium and low profile performance modeling, not to obtair,
absolute predictions. The detailed timing information
obtained from these measurements will be useful inputs ig,
the medium and low level modeling, where more accurate
predictions of absolute performance are sought.

11. Conclusions and Further Work

In summary, there are several conclusions which the high-
level performance models revealed about the PowerPC and

C80 2D IRST multiprocessor solutions. Data partitioning vial2-

column tiling was more efficient than algorithm partitioning.

The column tile models estimated a near linear speed up ov&?
the single processor performance models for both the Pow-
erPC and C80 because the partitioned data approach pro-

vided a well-balanced workload across the systeml4

Algorithm partitioning did not work as effectively since the
algorithm could not be evenly partitioned for distributed exe-

cution. Furthermore, the partitioned data solution required®-

significantly lower data traffic than the partitioned algorithm

solution. In both the PowerPC and C80 systems, bus traffic
was approximately 1.6 Mwords/second, compared to 46.4
and 20.8 Mwords/second for the PowerPC and C80 solutiorh'i1

11.

S

the fall, 1997. During that time, the methodology will be
tried out on a more complex 3D IRST algorithm which will
present a much more challenging modeling problem. Com-
plete results on this performance modeling effort is available
on line at http://rassp.sanders.com/legacy.
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