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Abstract
The purpose and goals of performance modeling for

multiprocessor systems using a token-based methodology
in VHDL are discussed. Following this motivation, a frame-
work for performance modeling is described, which
involves modeling hardware and software at different levels
of abstraction; the scope of this paper primarily addresses
the high profile performance model. A commercial tool
supporting this modeling framework is then introduced.
The discussion continues with an overview of the real time
infrared search and track algorithm, and our system design
problem. Preliminary results of our performance modeling
efforts and validation via code profiling is summarized, and
future plans are described.

1. Introduction
Performance modeling plays a key role in the RASSP-

based top-down design methodology [1, 2]. It immediately
follows the initial design steps which include system
requirements capture, algorithm and functional design, and
data/control flow design. The results of the performance
modeling step can be used to refine the design by optionally
revisiting the preceding steps. Nonetheless, performance
modeling does drive the succeeding steps in the design
methodology, including behavioral virtual prototyping,
detailed hardware and software designs, and final prototyp-
ing. A primary benefit of performance modeling is that the
increased effort it calls for in the conceptual phase of the
design greatly lowers the risk and hence the cost in the
development of a system, which has also been observed [3].
Throughout this methodology, VHDL [4] plays a key role
in the system specification, modeling, synthesis, detailed
design, and documentation because of its inherent support
for representing systems at different levels of abstraction.

This work was performed by Sanders, a Lockheed Martin Company, as
part of the Sanders RASSP program under contract N00014-93-C-2172 to
the Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington,
DC 20375-5326. The Sponsoring Agency is: Advanced Research Projects
Agency, Electronic System Technology Office, 3701 North Fairfax Drive,
Arlington, VA 22203-1714. The Sanders RASSP team consists of Sanders,
Motorola, Hughes, and ISX.

2. Performance Modeling Goals
There are four primary goals of performance modeli

in this methodology. First, system sizing can be acco
plished including the number and type of processors, me
ories, and buffer elements. Second, network architect
considerations delve into the system’s network topolo
(e.g. shared bus, ring, cube). Link bandwidths and proto
requirements are also explored under network architect
selection. Third, hardware/software mapping includ
application partitioning and allocation, task scheduling a
flow control, and assessing microprocessor communi
tions. Fourth, concept verification deals with processor a
link throughput and utilization. Note that performanc
modeling itself is a tool for satisfying these goals, and 
such may also be useful in other steps of the top-do
design methodology.

At the performance level, interaction between hardwa
and software is analyzed. Software tasks are represente
the execution of primitives on a processor. This is acco
plished by modeling each primitive as a simple delay rath
than a sequence of assembly instructions. Performa
models are not concerned with the actual data but rat
with the flow of data through the system. A data typ
known as a token [5], abstractly represents this flow of da
Performance models allow the designer to explore the w
(software task), where (processor element) and wh
(token) of a system design at a high abstraction level. T
output of performance modeling is an efficient syste
architecture solution, which drives behavioral virtual prot
typing, the next step in the design methodology. To mo
easily assess this performance modeling approach, 
effort has limited its scope to the performance modeling
deterministic, synchronous algorithms.

3. Levels of Modeling Abstraction
The general structure of performance modeling is illu

trated in Figure 1. The algorithms, implemented in so
ware, are decomposed into separate cooperating ta
Processor elements are characterized by description
their instruction sets, memory hierarchies and token int
faces. Tokens model the data communication between p
cessors. Communication mechanisms between proces
are represented as abstract blocks, but can be realized u
a variety of bus protocols and topologies. Finally, fun
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tional blocks of the target algorithm are mapped onto spe-
cific processors.

In this study, a flexible performance modeling frame-
work to accurately and rapidly explore the architectural
design space is used. It consists of the following four major
aspects: software task modeling, processor characterization,
network communication, and token resolution. Using high,
medium, and low levels of abstraction for each of these
aspects, three corresponding performance modeling profiles
(high, medium, and low) have been developed, as shown in
Table 1. The low level of abstraction requires an increased
model development and simulation time, with the benefit of
more accurate models and a commensurate higher confi-
dence in the integrity of the proposed architectural design.
The high level of abstraction yields quicker results with less
effort, but typically does sacrifice the accuracy of the
results. In an ideal situation, one would start with a high
level profile to explore many options identify candidate
architectures, explore promising candidates with more

refined models at the medium level, and investigate a ha
ful of models at the lowest level. However, for a particul
project, it may be appropriate to use just one profile lev
or combine different levels of abstraction from these ma
aspects for a customized performance model. The ri
approach depends largely on the time, budget, availabi
of modeling resources, and purpose of the study. T
framework is intended as a set of flexible guidelines to ra
issues of importance in developing performance mode
The scope of this paper discusses primarily our results
applying the high level profile performance modeling to o
system design problem.

4. Environment for Performance Modeling
Through RASSP-sponsored research, a generic, para

terizable library of VHDL performance models, called th
Performance Model Library (PML) [5, 6, 7], was deve
oped. PML serves as the foundation for a new model
environment called Cosmos (formerly the Performan
Modeling Workbench (PMW)) [8], developed by Omni
view, Inc. [9]. Cosmos uses elements from PML to mod
processors, communication elements, I/O devices, and s
ware tasks. This library contains many commonly us
models, and new customized models can be created
modifying the parameters of these library elemen
Beneath each model or component is VHDL code or a fl
chart modeling the behavior, which is tuned with its ava
able parameters. For example, a processor is modeled
specifying its various attributes including information abo
its instruction set, memory and cache architecture, a
operating system, as shown in the Cosmos graphical u
interface (GUI) in Figure 2. Hardware architecture topol
gies are composed by creating instances of the hardw
components and by setting or modifying their parameters
necessary. Finally, the hardware components are conne
together to complete the hardware model.

Table 1: Aspects of performance modeling for each abstraction level

Major Aspect High Medium Low

Software
Task Modeling

time delay estimate partial VHDL implementation of
software tasks with time delay
estimates (HW/SW Codesign)

full VHDL implementation of
software tasks with time delay
estimates (HW/SW Codesign)

Processor
Characterization

high level DSP
primitives,
small set of simpli-
fied instructions

low level DSP primitives,
medium to large instruction set

detailed instruction set,
context switch support,
detailed cache modeling

Network
Communication

generic
point-to-point
communications

bus topology
token I/O
bus I/O instructions

bus protocol
(VME, Myrinet, PCI, Raceway,
SCI, etc.)

Token
Resolution

10% to 100% of
input sample rate

1% to 10% of
input sample rate

less than 1% of
input sample rate

Figure 1: General structure of performance modeling
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Software is modeled separately from the hardware. The
software tasks implementing the algorithm are specified
graphically to establish their precedence and dependence
relationships. The software design editor captures the target
algorithm graphically. Within Cosmos, software tasks are
individually modeled using VHDL or a flow chart. Once
both hardware architectures and software tasks are specified,
the software tasks are mapped onto the processor elements.
After the mapping is complete, Cosmos generates a VHDL
model of the system, which is then simulated by any IEEE-
compliant VHDL simulator. As the model is simulated, a
transcript file containing the results of the simulation is pro-
duced. The simulation times in this effort ranged from one to
eighteen minutes. The results are then read, interpreted, and
displayed by Cosmos. The Cosmos GUI supports various
system and component level views of the results, facilitating
the analysis of system performance (throughput, latency, uti-
lization, etc.), identification of bottlenecks and over-designs,
and comparisons of designs. In short, Cosmos provides the
GUI, for creating the models and interpreting the simulation
results, as well as the library containing the hardware and
software models. A separate VHDL simulator provides the
execution environment which performs out the system simu-
lation. This design process is summarized in Figure 3.

5. IRST Algorithm and the Modeling Problem
Infrared Search and Track (IRST) systems are a class of

passive military infrared systems. The goal of such a system

is to reliably detect, locate and track infrared-emittin
objects. The presence of background radiation and other 
turbances increases the difficulty of this task. Valid targe
are modeled as point-source objects in highly structur
background at ranges beyond five kilometers. IRST syste
are considered an alternative to radar in certain cases du
their passive nature and anti-stealth capability. The char
teristics of an IRST system include a wide field of view, wi
coverage up to 360 degrees in azimuth and up to 90 deg
in elevation, for an airborne system. As a result, typic
frame times on the order of one to ten seconds and typ
pixel rates of one million pixels per second are encounte
due to the large images these systems generate. Due t
high volume of pixels and the priority of detecting small ta
gets, IRST systems depend on automation to screen f

Figure 2: Processor modeling parameters

Figure 3: Cosmos design process
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alarms. Most current research is focused on signal process-
ing to detect targets in the presence of severe clutter [10].

The signal processing for IRST systems typically consist
of two components: a detection processor and a track proces-
sor. The detection processor performs spatial processing on
the input image at the required high data rate and thresholds
the result to pass a manageable number of threshold exceed-
ances (detections) to the track processing function. The track
processor operates on the detections from each frame to gen-
erate tracks of temporally persistent detections and evaluates
the validity of a particular track being target based. This per-
formance modeling effort focused on modeling the imple-
mentation of the detection algorithms using 2D and 3D
spatial processing to reliably detect infrared-emitting
objects. As the subsequent discussion will reveal, these algo-
rithms require a large amount of computational power (on
the order of 100-1000 operations per pixel). Given this
requirement, a multiprocessor system is necessary to process
the data in real-time. Performance modeling will be shown
to be a powerful aid in exploring the architectural design
space of a high performance multiprocessor system.

As a vehicle for demonstrating this performance model-
ing approach, the detection portion of the 2D IRST algo-
rithm is being investigated for implementation on two
candidate processors, the PowerPC 604 [11] and the Texas
Instruments TMS320C80 [12]. The scope of this paper is
limited to high profile performance modeling. As depicted in
Figure 4, the 2D IRST consists of three main stages: a DC

removal front end, a clutter estimation and spatial filter sec-
tion, and a background normalize/threshold stage where
detections are made. The algorithm was prototyped and
functionally verified using the Synchronous Dataflow
domain of Ptolemy [13], which is a C++ based simulation
environment. Our system problem was to evaluate candidate
implementations using high profile performance models.
These implementations included information on the number
of processors, hardware topology, and algorithmic mapping
needed to handle the throughput of 1.6 Mpixels/second,
using architectures consisting of either the PowerPC or the
TMS320C80 processors.

6. Software Task Modeling
In high profile performance modeling, the performance

model is assumed to be derived from a paper specification.
Hence, the computational and memory access requirements
of each functional block were estimated from this specifica-
tion. The same software task models were used for the Pow-

erPC and the C80. At this level of performance modelin
the differing processor performance is captured by th
respective processor characterizations, discussed furthe
section 7.

6.1. DC Removal
The first functional block in the 2D IRST algorithm is th

DC removal block. This function uses a 2D finite impuls
response (FIR) filter with unity coefficients to eliminate th
DC component from the image. Figure 5 shows a block d
gram of this filter. Since the filter is really just a 13 x 13 sum
mation window, it can be implemented very efficiently in 
systolic fashion. The systolic implementation slides a su
mation window down the columns of the image. Pixe
within the filter window are summed along the rows, an
each row sum is kept in storage. Adding these row sums p
duces the filter output. The systolic nature of this approa
has two consequences. First, the computational and mem
access workloads are constant regardless of the summa
window size. It is the size of the storage area that varies w
window size. Second, there is a region around the edge o
image where the filter output is invalid because a part of 
filter does not overlap the image. The following comput
tional and memory access workload per pixel for the D
Removal filter is shown in Table 2.

6.2. Clutter Estimator
The next software task is the clutter estimator and spa

filter. The clutter estimator performs a local standard dev
tion estimate and a filter select operation. The local stand
deviation estimate is identical to the summation windo
except it processes the absolute value of the input image.
filter select uses this estimate to categorize the clutter i
one of four clutter categories (none, low, medium, hig
using three thresholds. This selection may be implemen
with just two branches per pixel and needs the followi
resources, shown in Table 3.

Figure 4: 2D IRST detection block diagram Table 2: DC removal filter workload

Workload Estimate

5 adds

4 loads

3 stores

Figure 5: DC removal block diagram
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Table 4 has the total clutter estimate workload require-
ments, which is the sum of the local standard deviation esti-
mate and filter select.workloads.

6.3. Spatial Filter
The output of the filter select drives the spatial filter,

which applies one of four 7 x 7 filter kernels. The adaptive
spatial filter performs two tasks: (i) spatial filtering and (ii) a
scale/clip operation. Since the kernels possess quadrature-
mirror symmetry, each kernel has just sixteen unique coeffi-
cients. By pre-adding the spatial data and then multiplying
by these coefficients, the computational load can be reduced
to 48 adds and 15 multiplies. The total workload requirement
for the spatial filter per pixel is listed in Table 5.

6.4. Background Normalizer/Threshold
The final functional block, the Background Normalize

Threshold Process, as shown in Figure 6. It includes t

summation windows which each have the same loads as
DC removal block. A total breakdown of computational an
memory access workloads for each component of the Ba
ground Normalize/Threshold Process per pixel is shown
Table 6.

6.5. Total Workload
The above approximations of the 2D IRST algorithm

workload were used to specify the software tasking mode
and have been totaled in Table 7. Note that a generic inst
tion set has been employed at this level, e.g. load, add, m
ply. At lower levels of abstraction, performance models m
contain sufficient instruction set detail to allow modeling th
software tasks more accurately. It is important to try to ke
the high-level software task models as generic as possibl
they can be easily translated to different target architectu
This aspect of high-level software task models enable 
architectural design space to be explored rapidly.

Table 3: Filter select workload

Workload Estimate

3 adds

6 branches

1 load

1 store

Table 4: Clutter estimate total workload

Workload Estimate

7 adds

4 loads

8 branches

3 stores

1 negate

Table 5: Spatial filter total workload

Workload Estimate

48 adds

49 loads

15 multiplies

2 stores

1 shift

1 AND/OR

1 branch

Table 6: Background normalize / threshold
total workload

Workload Estimate

11 adds

6 loads

5 stores

4 branches

1 multiply

1 negate

1 shift

1 AND/OR

Figure 6: Background normalizer/threshold
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7. Processor Characterizations
In this section, the various instructions used to model both

the algorithm and the instruction sets of the processors are
discussed and explained. Due to the relative simplicity of the
algorithm and the limited number of ways it can be parti-
tioned on the PowerPC and C80, no operating system over-
head was considered directly. However, a 10% software
overhead factor was used to represent initialization and loop
setup stages of the software tasks in both cases.

7.1. PowerPC Processor characterization
For this first case, PowerPC 604 processors are the ele-

ments which perform the 2D IRST processing workload.
Different multiprocessor configurations were explored to
arrive at a potential solution. In the process, performance
bottlenecks, software to hardware mappings, data traffic
rates and the number of processors were identified. It is
important at this level to use a simple model of the processor
to simplify the replacement of different processors as well as
to easily modify the software task models. For instance, if
parallelization becomes necessary, it should be easy to break
a large task into smaller parallelized portions. This is accom-
plished with a concise instruction set for the processor. A
high-level instruction set is selected only after the task mod-
eling phase is completed.

In the 2D IRST algorithm, the following unique instruc-
tions were identified: integer add, load, store, branch, negate,
integer multiply, and, or, shift. For the PowerPC 604, the fol-
lowing instructions were selected: IADD, IMLT, LOAD,
STORE, BRANCH, IOP. The mnemonics IADD and IMLT
represent integer add and multiply instructions, respectively.
The IOP instruction describes the class of ALU logical oper-
ations. Thus, six instructions were used to characterize the
IRST algorithm processing needs. Instruction execution per-
formance information is shown in Table 8 [11]. This infor-
mation was necessary to calculate the time delays for each
function processed on a PowerPC.

In our examples, the cache hit rates were set at 90%. This
value was judged a reasonable starting point. This assump-

tion was drawn from the cache hit rate analysis performed
the SPEC92 benchmarks [14]. The potential dangers in g
eralizing the cache hit rate must be stressed, however.
rates are extremely dependent on cache size, data depen
cies and algorithm implementation. In high profile perfo
mance modeling, this is a unavoidable since no softw
code is assumed to exist from which cache hit rates can
determined. Main memory access times are determined
terms of the number of clock cycles. In this example, it tak
six clock cycles to access a byte in main memory. Of cour
different bus speeds are available with a correspond
impact on system cost. Bus speed should be considere
important variable in assessing the performance of a proc
sor since efficient memory hierarchy often translates direc
into improved processor performance.

7.2. TMS320C80 Processor characterization
In this second implementation case for the 2D IRST alg

rithm, Texas Instruments TMS320C80 processors perfo
the signal processing workload. Since the software ta
model is identical with the PowerPC software task mod
the same unique instructions were identified. Similar fixe
point instruction sets in the C80 allowed the same six hig
level instructions as in the PowerPC to also be selected. 
formance information on the instruction set execution
shown in Table 9. As in the PowerPC case, the cache hit 
was set at 90%.

The difficulty in producing an accurate high-level chara
terization of the C80 is its unconventional configuration. T
C80 consists of one master processor (MP) and four para
processors (PP), with 38 Kbytes of internal shared memo
The MP is a 32-bit RISC floating-point processor, and
used to coordinate the operation of the four PPs and to c
municate with external devices. Each PP is a high perf

* I and D bytes refer to instruction and data memories respectively. Cyc
represent the number of clock cycles required to execute the instruct
Superscalar refers to the number of functional units available to execute
operation.

Table 7: 2D IRST algorithm total workload

Workload Estimate

71 adds

63 loads

16 multiplies

13 stores

13 branches

2 negates

2 shifts

2 AND/OR

Table 8: PowerPC high level processor
instruction set

Instruction Cycles
Super-
scalar

Memory Access*

IADD 1 2 fetch 4 I bytes

IMLT 1 1 fetch 4 I bytes

LOAD 1 1 fetch 4 I bytes, fetch
4 D bytes

STORE 1 1 fetch 4 I bytes, store
4 D bytes

BRANCH 1 1 fetch 4 I bytes

IOP 1 1 fetch 4 I bytes
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mance 32-bit fixed point DSP. To facilitate efficient memory
traffic, the C80 also has an intelligent DMA controller, called
the transfer controller (TC), which manages all memory
transfers to and from internal memory, including cache ser-
vicing.

A reasonable first order approach to model the chip is to
multiply the C80 clock rate by four, corresponding to the
number of PPs. Since the algorithm is fixed-point, the float-
ing-point MP, which traditionally acts as a task coordinator
anyway, is not taken into account as contributing any usable
processing power. However, a more reasonable assumption
is to adjust the factor of four downward for three reasons.
First, a clock rate increase of four implies a linear speed up
which is very difficult to achieve in practice due to problems
such as memory and synchronization overhead [15]. Second,
the algorithm is largely sequential in nature, and not entirely
parallelizable. Finally, the TC may become a performance
bottleneck as the amount of data transfer increases. For these
reasons, the clock rate was conservatively increased by a fac-
tor of three rather than four.

The C80 architecture in this case study consists of a 40
MHz C80 with a 20 MHz 64-bit bus. Thus, the processor
performance model sets the clock rate at 120 MHz. Main
memory access times were determined in terms of clock
cycles. Eight bytes can be transferred from main memory
every other processor clock cycle. This rate assumes that the
transfer controller moves large blocks of data (128 bytes).
This is a reasonable assumption for this image processing
application.

8. Network Communication and
Token Resolution

In the high profile performance modeling, the network
communication between processors is modeled as generic
point-to-point link with unlimited bandwidths. With this
approach, there are no barriers to interprocessor communica-
tion. Thus, the problem is characterized as compute-bound.
By not imposing a ceiling on the communication bandwidth
within the models, the amount of communication needed to

support a particular architecture and mapping can be e
mated. These estimates can then be judged as to their f
bility in being realized in hardware. More importantly, thes
estimates are useful in transitioning to the medium and l
profile performance models where communication ban
width limits are part of the models.

Consistent with the discussion in section 3, a relative
coarse token resolution was used. Here, tokens were use
represent data blocks ranging from a column of 256 samp
up to 800 columns (204,800 samples). This approach
appropriate at this level of abstraction as it is consistent w
the expected accuracy of the results, in addition to keep
simulation times relatively short.

9. Design Space Exploration

9.1. Performance modeling using PowerPC-based
designs

In this section, the progression of performance models
arrive at a viable solution using PowerPCs in a multiproc
sor system is discussed. Various hardware configuratio
were modeled by adding additional PowerPCs until a via
multiprocessor design solution was reached. From this fi
performance model, communication traffic issues were e
mated.

The initial design uses one PowerPC 604 to run the en
algorithm, providing a lower bound on the number of proce
sors to needed to solve the problem at the 1.6 Mpixels/s
ond rate. Using the algorithmic and processor modeli
numbers developed in sections 5 and 6, a single Powe
was estimated to implement the 2D IRST at 140.8 Kpixe
second, just 8.6% of the required rate. Assuming a lin
speedup, at least eighteen PowerPC processors woul
required to perform the task. This calculation also assum
that utilization on each processor does not exceed 80%
expected, the spatial filtering task was the major perf
mance bottleneck, and its alternative implementations w
the focus of subsequent designs.

A second design assumed a pipelined configuration for
functions, with the spatial filter additionally being paralle
ized. The filter was partitioned into eight subtasks, whe
each subtask processed two of the sixteen product su
Each of these subtasks was mapped to a single proce
and a ninth task to collect and add the results was assigne
a ninth processor. The other 2D IRST functions were pip
lined and assigned to three other processors. With a cei
of 80% utilization, this model estimated a processing rate
608.7 Kpixels/second, 37.2% of the total processing requ
ment. In this design, the background normalize/thresh
task became the limiting factor for higher performance a
was assigned to run on just one processor. In terms of c
munication bandwidth, the eight-way partitioning increas
the peak point-to-point bandwidth to 12.8 Mwords/second

A third PowerPC design parallelized the spatial filter in
sixteen separate subtasks (one for each unique filter co
cient), with five additional subtasks to sum the results. T
DC Removal task was pipelined into two subtasks, the cl
ter estimation was pipelined into three subtasks, and 

Table 9: TMS320C80 high level processor
instruction set

Instruction Cycles
Super-
scalar

Memory Access*

IADD 1 1 fetch 8 I bytes

IMLT 1 1 fetch 8 I bytes

LOAD 1 2 fetch 8 I bytes,
fetch 8 D bytes

STORE 1 2 fetch 8 I bytes,
store 4 D bytes

BRANCH 1 1 fetch 8 I bytes

IOP 1 1 fetch 8 I bytes
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background normalization/threshold was pipelined into three
subtasks, for a total of 29 processors. The utilization versus
time diagram illustrates the difficulty in balancing the algo-
rithmic workload across the system (see Figure 7).

However, this partitioned algorithm solution has several
difficulties from a communication perspective. Given that
every connection between software tasks represents the sus-
tained data traffic of 1.6 Mwords/second, then the total inter-
processor communication requirement (including the input
data) is 46.4 Mwords/second. If too many processors were
placed on a single board, bus data traffic may be prohibi-
tively high. Thus, this solution requires a relatively complex
hardware architecture with less complex software develop-
ment.

Another approach to a potential solution is through data
partitioning. Instead of decomposing the algorithm, the input
image is partitioned and processed on separate processors.
Since the output of the processed image is detection reports,
i.e., flags declaring a specific pixel judged to be a target, the
partitioned image does not have to be reconstituted. The
infrequency of detection reports means output communica-

tion bandwidth is low. Two straightforward partition
schemes will be discussed: row tiling and column tiling.

In row tiling, each tile (section of the image) is compos
of a specified number of rows. Column tiling partitions th
image along columns. Because each processor will run
entire algorithm on the row (or column) tile, it is necessa
to add overlap regions to each tile so that spatial filter a
summing window operations will be performed correctl
Since the largest window size involved in these operation
13 x 13, the row and column tile implementations must ha
an overlap of six on each side of the tile. Since input imag
are 256 rows by 6383 columns, row tiling is not feasible; t
model provides an estimate of 128 processors to maintain
1.6 Mpixels/second rate. In contrast, the column tiled mo
estimated that just eighteen PowerPC processors w
required. Software development would be straightforwa
since each processor runs the same 2D IRST algorithm c
to process its own column tile. The only modification to th
algorithm is to disallow valid detection reports to come fro
the overlapping regions of input data. Figure 8 depicts 

utilization versus time for each processor in the syste
revealing a maximum processor utilization of 74%.

This column tile solution has a number of advantages o
the partitioned algorithm solution. First, its bus traffic is low

Figure 7: Performance profile of PowerPC partitioned
algorithm implementation model

Figure 8: Performance profile of PowerPC partitioned
data implementation model
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approximately 1.6 Mwords/second versus 46.4 Mwords/sec-
ond. Second, software development is easier since the one
version of the code is needed instead of portions of the algo-
rithm being scattered over 29 processors in the partitioned
algorithm case. Third, this solution uses fewer processors.
This will simplify the hardware interconnection and lower
the cost of the system. Fourth, this solution results in lower
latency since initial columns of the frame arriving at the first
tile processor are processed immediately. The partitioned
algorithm solution must fill up its eleven stage pipeline
before detection reports will be produced. Finally, this solu-
tion uses tokens representing the data size of an entire col-
umn tile. This results in dramatically fewer tokens in the
simulation yielding faster simulation run times.

The comparison between the partitioned algorithm solu-
tion and the partitioned data solution seems relatively
immune to performance model inaccuracies for two reasons.
First, improvements in performance model accuracy will
effect both solutions fairly evenly. If a more accurate perfor-
mance model establishes faster processing times then this
will reduce the number of processors necessary in both solu-
tions. Second, interprocessor data traffic for the partitioned
algorithm solution is 29 times higher than the partitioned
data solution. It is difficult to imagine inaccuracies in this
performance model so great as to remove this disadvantage.
Medium level performance modeling will more rigorously
establish the validity of this 19 PowerPC multiprocessor sys-
tem solution.

9.2. Performance modeling using TMS320C80-
based designs

Because the software task modeling of the 2D IRST algo-
rithm is the same for the PowerPC 604 and C80 cases, the
design space exploration will closely mirror that for the
PowerPC. The first performance model ran the 2D IRST
algorithm on a single C80, indicating that a single C80 can
process 209.2 Kpixels/second, which is 12.8% of the total
required processing power. Assuming a linear speedup, a
minimum of eight C80 processors would be required to per-
form the task in real-time. As with the PowerPC, the spatial
filter task was also the major performance bottleneck.

The second approach attacked this performance bottle-
neck by partitioning the algorithm. At this point, the similar
work done for the PowerPC was leveraged. Since each C80
has more than twice the processing power of the PowerPC,
the expectation is that many of the processors would be sig-
nificantly underutilized. The results confirmed this by reveal-
ing processor utilizations ranging from 11.0% through
35.0%, well below the 80% maximum. Two or more tasks
were combined onto a single processor where possible,
reducing the total number of required processors. In doing
this, it was assumed that performing multiple tasks on a sin-
gle processor that the single task processor utilizations were
approximately additive, as long as the total of 80% utiliza-
tion was not exceeded. In this case, the solution turned out to
consist of eleven C80s, as shown in Figure 9. Similar to the
PowerPC case, every connection between grouped software
tasks (interprocessor) represented the sustained data traffic

of 1.6 Mwords/second. Thus, the total interprocessor co
munication was 20.8 Mwords/second.

The column tile approach (data partitioning) yielded
much more efficient solution. The problem is set up iden
cally to the PowerPC solution, but in this case eight proc
sors were necessary to process the frame in real-time.
additional C80 processor was allocated to account for 
data distribution handling necessary to distributed the c
umn tiles. The utilization versus time for this system 
depicted in Figure 10. The high processor utilizations res
from the well balanced distribution of data across the mu
processor system. The column tile solution had a numbe
advantages over the partitioned algorithm solution, as in 
PowerPC case. However, the advantage in interproces
communication bandwidth was less over the algorithm pa
tioned case for the C80 (1.6 Mwords/second versus 2
Mwords/second).

10. Verification of Performance Modeling
As a means of validating and verifying the models, the 2

IRST algorithm was implemented in C and targeted to t
PowerPC and the C80. In coding the algorithm, only obvio
and easy optimizations were made, and no assembly 
guage was used. Individual routines as well as the entire
IRST algorithm were timed and profiled. The PowerPC ta
get, using a 100 MHz processor, was measured to proc
images at 126.2 Kpixels/second, which is somewhat close
the 140.8 Kpixels/second rate predicted by the high pro
model. For the TMS320C80, a 40 MHz processor was us
and was found to process data at 391.4 Kpixels/second, c
pared with 209.2 Kpixels/second for the model. These p

Figure 9: Performance profile of TMS320C80
partitioned algorithm implementation model
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dictions are reasonably close for the purpose of the high
profile modeling. It is important to keep in mind that the pri-
mary goal of high profile modeling is for relative comparison
among alternatives, which are investigated more closely in
medium and low profile performance modeling, not to obtain
absolute predictions. The detailed timing information
obtained from these measurements will be useful inputs in
the medium and low level modeling, where more accurate
predictions of absolute performance are sought.

11. Conclusions and Further Work
In summary, there are several conclusions which the high-

level performance models revealed about the PowerPC and
C80 2D IRST multiprocessor solutions. Data partitioning via
column tiling was more efficient than algorithm partitioning.
The column tile models estimated a near linear speed up over
the single processor performance models for both the Pow-
erPC and C80 because the partitioned data approach pro-
vided a well-balanced workload across the system.
Algorithm partitioning did not work as effectively since the
algorithm could not be evenly partitioned for distributed exe-
cution. Furthermore, the partitioned data solution required
significantly lower data traffic than the partitioned algorithm
solution. In both the PowerPC and C80 systems, bus traffic
was approximately 1.6 Mwords/second, compared to 46.4
and 20.8 Mwords/second for the PowerPC and C80 solutions
respectively. There was some agreement between the high
profile performance modeling and the profiling of the C code
implementation. The value of the high profile modeling will
be more accurately quantified and conclusions on its advan-
tages and drawbacks will be more clear once the medium
and low profile performance modeling is complete during

the fall, 1997. During that time, the methodology will b
tried out on a more complex 3D IRST algorithm which wi
present a much more challenging modeling problem. Co
plete results on this performance modeling effort is availa
on line at http://rassp.sanders.com/legacy.
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