
FromProceedings of the 1997 IEEE Int. Workshop on Rapid System Prototyping (RSP),Copyright 1997 IEEE.

Abstract

Developing multiprocessor systems to implement high per-
formance signal processing algorithms can be a formidable
undertaking. A process for designing multiprocessor sys-
tems, using primarily programmable processors, is pro-
posed here. This design process starts with algorithm entry
and analysis, continues with functional decomposition and
architecture entry, which are used to drive the algorithm to
architecture mapping. The development process then pro-
ceeds with a combination of hardware profiling and perfor-
mance modeling, followed by the visualization of the
results. Since the process is iterative, feedback from later
steps are often used to make better design choices in earlier
steps, allowing the impact of these decisions to be re-evalu-
ated. Ultimately, the user finishes with an implemented sys-
tem. Each of these steps are described in detail, as well as
some of the tools which support them.

1. Introduction

The development of a signal processing system typically
starts with system requirements, in terms of what function-
ally the system must implement. These requirements usu-
ally include a description of the type of system function to
be implemented and the rate at which this processing must
be accomplished as well as various environmental and
physical restrictions such as weight, volume, power con-
sumption, and reliability. For many applications, the high
computational needs can be met with a multiprocessor sys-
tem. The development of multiprocessor systems is inher-
ently complex, as architectural decisions must be made,
resources must be appropriately allocated and utilized, and
the flow of data and information managed. As the number
of processors increases, this complexity also increases and
requires a disciplined development process and set of sup-
porting tools for that process.

*PREPARED THROUGH COLLABORATIVE PARTICIPA-
TION IN THE ADVANCED SENSORS CONSORTIUM SPON-
SORED BY THE U.S. ARMY RESEARCH LABORATORIES
UNDER COOPERATIVE AGREEMENT DAAL01-96-2-0001.

The purpose of this document is to describe a process for
developing multiprocessor systems that has been put
together by various members of the Army Sensors Feder-
ated Labs Program. The process for developing these sys-
tems is shown in Figure 1. The process begins with system
algorithm entry and analysis, which is followed by the
functional decomposition of the algorithm. At this point,
algorithmic blocks are matched to library elements and
hardware architectures are defined. The results of these
steps recombine as the user performs the system algorithm
mapping, assigning the algorithmic blocks to processors or
other hardware resources in the architecture. This mapped
architecture is now available for performance simulation or
execution on a target hardware system. Various perfor-
mance metrics are collected during the performance simula-
tion or target execution, which can be viewed in various
ways using the visualization tools. Since this process is iter-
ative, feedback from later steps are often used to make bet-
ter design choices in earlier steps, allowing the impact of
these decisions to be re-evaluated. Ultimately, the user fin-

Algorithm Analysis

Functional Decomposition

Algorithm Entry

Architecture Entry

Performance ModelingTarget Hardware

Visualization

Algorithm to Architecture Mapping

Figure 1: Multiprocessor System Development

Multiprocessor System Development for
High Performance Signal Processing Applications

Eric K. Pauer
Sanders, a Lockheed Martin Company

Signal Processing Center
Nashua, NH 03061-0868

(603) 885-8358, Fax (603) 885-0631
pauer@sanders.com

ishes with an implemented system via the target execution.
Each of these steps will be described in more detail in the
following sections along with the tools that support these
steps. Of specific concern are those areas in which tool sup-
port is weak. The transition from algorithm analysis and
decomposition into mapping as well as the automatic map-
ping of decomposed algorithms onto architectures are not
well supported.

2. System Algorithm Entry and Analysis

The first step in realizing an implementation of a multipro-
cessor signal processing system is designing and develop-
ing an algorithm that functionally satisfies the system
requirements. This representation and analysis to verify the
algorithm is the primary goal of these first steps in the pro-
cess. In many cases, an algorithm or portions of the algo-
rithm are available, but need some modification or
adaptation for the specific problem at hand. There are sev-
eral tools, each of which has their strengths. Each tool takes
a slightly different approach to the design problem.

2.1. MATLAB

A popular tool for algorithm development, from the point of
view of ASFL, is MATLAB* [1], by the Mathworks, Inc.
MATLAB provides an easy to use computing environment
that combines high performance computation with visual-
ization capabilities. Within MATLAB, the user expresses
their algorithms using a natural mathematical syntax, spe-
cific to MATLAB, in a command line environment. MAT-
LAB, which is short for MATrix-LABoratory, uses matrices
and vectors as its basic data entity for data representation. It
is an especially good environment for quickly prototyping
and testing algorithms when the complexity of the algo-
rithms are relatively low and can be expressed easily as
matrix operations. The integrated visual capability is espe-
cially amenable to facilitating algorithm refinement. MAT-
LAB provides many built-in functions which are organized
into comprehensive collections called toolboxes. There is
also the ability to create custom functional blocks to create
your own toolboxes. MATLAB can also call routines writ-
ten in C or Fortran from its environment, which adds to its
flexibility to utilize legacy code. The user must follow the
certain conventions to enable this to work.

MATLAB itself does not provide strong support for hierar-
chial modeling. Besides the built-in matrix and vector data
structures, it is not easy to represent data at higher levels or
different levels of abstraction. The Mathworks appears to
addressing this need and hierarchial modeling will likely be
well supported in future releases of MATLAB. Similarly,
functions suffer from similar limitations in abstracting dif-
ferent types of computations; however, the toolbox capabil-
ity does help overcome this limitation to some extent. Since

*MATLAB is a registered trademark of The Mathworks, Inc.

MATLAB is an interpreted environment, it gives quick
feedback to the user when used interactively. However,
when large simulations are run with MATLAB using
scripts, they tend to suffer long simulation times because
the interpreted environment slows down the computation.
In short, MATLAB is an excellent tool for the development
of algorithms as long as the size and scope of the simula-
tions are not significantly impacted by the interpreted envi-
ronment.

2.2. Ptolemy

Another tool useful for the prototyping of signal processing
algorithms is Ptolemy [2], a software environment devel-
oped at the University of California, Berkeley, that supports
heterogeneous system simulation and design using several
different models of computation, each implemented in a
separate domain. Ptolemy has been developed in C++ using
an object-oriented software architecture, and is a freely dis-
tributable development environment, including all of its
source code. This greatly facilitates extending and custom-
izing Ptolemy to meet various needs. In the synchronous
dataflow (SDF) domain of Ptolemy, algorithms, represented
using data flow semantics, are comprised of functional
blocks, also calledstars. The SDF domain handles a class
of algorithms in which the schedule, or order of execution
of the stars, is deterministic and can be predicted at compile
time. The Ptolemy distribution provides a rich library of
SDF stars for algorithm development, and it is straightfor-
ward to create new stars. The Boolean dataflow (BDF) and
dynamic dataflow (DDF) domains relax the determinancy
requirements on the schedule, and can be useful in model-
ing dynamic systems. These domains also have many built-
in stars for algorithm development.

Ptolemy has both a graphical interface and a command line
interface. Algorithms can be expressed graphically using
the extensible block diagram environment, and then simu-
lated. There are many built-in display stars that enable the
results of the simulation to be shown in any of a variety of
graphical or textual formats. Ptolemy directly supports hier-
archial modeling, as groups of connected stars can be com-
bined into a galaxy, capturing the appropriate computations
into a single entity. The hierarchial modeling also supports
heterogeneous modeling, which allows different domains
(models of computation) to be part of the same simulation
model.

Currently, Ptolemy tends to require more set up to establish
a simulation than MATLAB, especially for smaller simula-
tions. However, members of the Ptolemy project are
actively working on upgrading Ptolemy’s graphical inter-
face, making this less of an issue. In addition, Ptolemy’s
strong support for hierarchial modeling and the fact that the
its simulation is performed by compiling and then execut-
ing greatly enhances its efficiency and usefulness as the
problem size increases in size and complexity.

2.3. Khoros

Khoros [3], a tool by Khoral Research, Inc., is geared for
the development of applications that involve image process-
ing. It is especially strong in information processing, data
exploration, and data visualization. As a visual program-
ming and simulation environment, Khoros enables algo-
rithms consisting of functions, or operators, to be
graphically expressed using the data flow visual language to
rapidly prototype new solutions. A command line capabil-
ity is also available. Khoros, like MATLAB, includes tool-
boxes consisting of a library of closely related functions,
which may be used in building and simulating applications,
and there is a capability to define and store new operators as
well.

2.4. Other Tools

There are a number of other commercial tools available that
can be used for algorithm development, including products
from the Alta Group (Signal Processing Workstation
(SPW)*) [4], DSP Development Corporation (DADiSP*)
[5], Hyperception (Hypersignal*) [6], Mathsoft (Mathcad*)
[7], Mentor Graphics Corporation (DSP Station* and DSP
Architect*) [8], Axiom (DataFlo*) [9], Orincon (RIPPEN*)
[10], Synopsys (COSSAP*) [11], and Momentum Data
Systems (DSPworks*) [12] to name a few. A comprehen-
sive coverage of the spectrum of tools has for these steps
have been compiled by Berkeley Design Technologies [13].

3. System Functional Decomposition

The system functional decomposition is accomplished by
many of the same tools as the system algorithm analysis
described in section 2. The goal of this step is to partition
the algorithm into fundamental functional blocks, which
can then be assigned to processors. The level of granularity
for these blocks must be fine enough so that a single proces-
sor or computational element can meet the real-time
throughput needs. The granularity can be such that multiple
blocks are assigned to a processor or hardware element.
However, the granularity of the blocks must be coarse
enough so that the overhead in passing data between pro-
cessors or computational elements does not become objec-
tionable. The decomposition of the algorithm may be
accomplished by pipelining the algorithm by breaking a
functional block into a series chain of more fundamental
blocks. The decomposition may also be accomplished by
parallelizing the computations, often by having each pro-
cessor in a group of N processors handle every Nth block of
data. Commonly, a combination of pipelining and parallel-
ization in implementing the algorithm is effective in meet-
ing the throughput requirements of the system. A variety of
combinations and topologies may need to be investigated
using subsequent steps in the development process. In both

*The name in parentheses is the trademark of the listed company.

cases, it is important to keep in mind that the overall latency
requirements of the system in addition to the throughput
requirements.

To facilitate implementation of the system later in the pro-
cess, it is desirable to partition or decompose the algorithm
into blocks that will match the available resources. In other
words, it is important for the functional blocks from this
step to have implementation counterparts in a vendor or
third party software library for the target processors, or
FPGA/ASIC designs that implement the functional block in
hardware. This correspondence will probably not always be
possible, but adherence to this general rule will greatly
reduce the risk and schedule of prototyping the system.
Most of the design tools discussed in section 2 facilitate this
correspondence by imposing restrictions on how the algo-
rithms are created or specified. In addition, performance
models of the existing blocks are more likely to exist by fol-
lowing this guideline, making this process much easier and
more accurate.

To facilitate steps later in the process, it useful to be able to
capture the results of the functional simulation at various
points in the algorithm. The input data, along with interme-
diate and final results, are necessary for verifying that the
functionality of the algorithm is preserved when imple-
menting the algorithm on target system hardware and/or
software. A variety of data sets, exercising the full range of
the algorithms computations, are a prudent measure to
insure that the functionality is not significantly perturbed in
the translation. Of course, there are always problems that
emerge when implementing an algorithm, so the intermedi-
ate results are essential in tracking down where the imple-
mentation has broken down. Ideally, these results are stored
in a central database that can be easily retrieved by a variety
of tools at various steps in the process.

With some algorithms, this decomposition step has already
been satisfactorily accomplished with the system algorithm
analysis. In most cases, the system functional decomposi-
tion is best arrived at in an iterative fashion after the algo-
rithm mapping and performance simulation steps in the
process have been exercised.

4. Architecture Entry

The system functional decomposition has laid the ground-
work for this next step in the development process, where
the prototype architectures are defined. An architecture edi-
tor is used to define prototype architectures, typically at a
high level of abstraction. The architectures consist of enti-
ties such as processors, memories, busses, interconnections,
data sources, and programmable hardware. In the ideal situ-
ation, these architectural entities exist in a component hard-
ware library or database. If they do not exist, new models
must be created as necessary to represent its architecture,
resources, and connectivity options.

Unfortunately, moving from the algorithm analysis and
decomposition steps into the architecture entry and map-
ping is not a well supported translation from a tools per-
spective. This is the case because the algorithm analysis is
typically a functional simulation while the architecture
entry and mapping is a performance simulation, represent-
ing two different paradigms of modeling. The tools that do
work with algorithms, architectures, and mappings are typi-
cally involved with performance modeling, and specific
tools are discussed in the next section.

If the system functional decomposition is done properly, the
functional blocks in the algorithm will, for the most part,
match up with components of the signal processing library.
This library can contain either software components or
hardware components or both. The software routines are
coded and optimized in assembly for one or more target
processors, or may simply be well written routines in C.
Software library routines that follow a standard application
programming interface (API) for standard interprocessor
communications may provide a good framework for imple-
mentation later, which can be a big advantage. Examples of
the low overhead communication standards include Mes-
sage Passing Interface (MPI) [14], Parallel Virtual Machine
(PVM) [15], Active Messages [16], and Fast Messages
[17]. The hardware components could include hardware
designs for FPGAs or ASICs, implementing signal process-
ing functions. The hardware implementations can take on a
variety of forms and may be detailed designs, structural or
behavioral VHDL, high-level performance models, or a
combination of the above. Whether they are implemented in
software or hardware, if functional blocks in the algorithm
do not exist in the available libraries, an appropriate perfor-
mance model must be created. Section 5.6 describes differ-
ent ways of accomplishing this. While a detai led
implementation will eventually be needed in subsequent
iterations of the development process for profiling on target
hardware, it is not necessary at this point. Mapping of the
functional blocks onto the architectural resources will now
take place, and this is described in more detail in section 5.

At this point, after defining the architectures and perform-
ing the mapping, the tools used may emphasize either per-
formance modeling via simulation or preparing target
hardware for performance analysis. During the early stages
of the design, the next step is typically performance simula-
tion, followed in later iterations by hardware profiling. In
the ideal situation, the same tools or toolsets could be used
as a front end for both purposes. The advantages of this
type of approach are that the architectural trade-off deci-
sions from performance simulations, including design
information, can be easily shared between simulations and
target implementations. It also provides a convenient mech-
anism for validating performance simulations against actual
hardware performance measurements. The performance
simulation helps in estimating answers to questions such as
is there enough compute power and enough connectivity
bandwidth to support the application. Lastly, it makes the

process easier for the designer as they have to become
familiar with only one set of tools versus two sets.

5. Mapping and Performance Modeling

The bottom line is that performance modeling information
is needed for both the architecutural components as well as
the algorithmic blocks in the functional decomposition to
do system performance modeling. The architectural and
algorithmic performance modeling information is needed
for the system performance simulation while the implemen-
tation (or design) of the components are needed for profil-
ing on the target hardware. Performance models can usually
be created from detailed designs in a straightforward fash-
ion, depending on the performance simulation tool and the
level of abstraction used. The performance of software
components (routines) can be obtained from the vendor that
created them or by profiling them on an instruction set sim-
ulator (ISS) or even an evaluation board for the processor,
depending on availability. Detailed hardware designs can be
simulated, and performance numbers can be obtained. The
need for performance information up front works out well
since the system performance modeling is usually done
before the target hardware profiling, and is in general easier
to obtain than the detailed implementations.

With the algorithm and architectures appropriately mod-
eled, the user now assigns the execution (in the case of soft-
ware) or implementation (in the case of hardware) to the
various entities in the architecture. For example, one or
more algorithmic blocks may be mapped to a processor or
each may be implemented in an FPGA. The execution time
of the blocks on the architectural entity as well as memory
and other processor resource usage can then be assigned.
The flow of data from one entity to another, over a bus or
interconnect, must also be assigned either automatically or
explicitly. Different tools approach this modeling task dif-
ferently.

Performance modeling can be done at different levels of
abstraction. At a very high level of abstraction for a fairly
simple system, a spreadsheet can be effective in determin-
ing loading and connectivity. Results can be obtained
quickly and many alternatives can be examined. However,
as the complexity of the problem increases, the accuracy of
this approach decreases as the user must make increasingly
larger assumptions about performance behavior. At the
other end of the spectrum, performance modeling can be
done a very fine level of abstraction where the hardware
(and often software) can be described in VHDL [18] or Ver-
ilog [19]. The advantage here is that the accuracy of the
models is very high because the models are (or are close to
being) virtual prototypes of the system. The disadvantages
are that it usually takes significant effort to set up these
models, and the simulation times can be long when an
entire system is modeled. However, for limited scope simu-
lations, this type of modeling can be very effective.

An intermediate level of abstraction may be a good com-
promise between the high level spreadsheet approach and
low level VHDL/Verilog modeling approach. This level of
modeling uses a discrete event simulation approach. It
offers reasonable accuracy with less set up and simulation
time than for the low level modeling. The discrete event
modeling may take advantage of the results of low level
performance modeling for individual components and sub-
systems, and the preliminary results from a spreadsheet
approach may serve as a starting point for the exploration of
options. Three tools that use discrete event modeling
(Ptolemy, RAMP, and NetSyn*) are described in the fol-
lowing sections. A fourth tool, PMW**, is based on VHDL
modeling and is also described.

5.1. Ptolemy

Performance modeling work done at Sanders as part of the
Rapid Prototyping of Application Specific Signal Proces-
sors (RASSP) program provides the capability to define
architectures at a high level of abstraction and map blocks
from a Ptolemy SDF algorithm onto the architecture [20].
The tool’s graphical user interface consists of two windows,
one for the algorithm and one for the architecture. The user
then maps the execution of the algorithmic blocks onto the
architectural entities. This tool then uses the algorithm,
architecture, and mapping information to create a Ptolemy
Discrete Event (DE) domain model, which is passed to the
Ptolemy kernel and simulated. The DE domain uses a
model of computation in which tokens with time stamps,
calledparticles, representing events are among the architec-
tural blocks, calledstars. Extensions to the DE domain, in
the form of new stars and particles, have been created so
that performance models can be defined and simulated. The
execution time of algorithmic blocks are represented by
cost functions, which have an overhead component and a
component proportional to the data size.

Another performance modeling effort at Sanders, under the
High Performance Scalable Computing (HPSC) program,
uses Ptolemy in a similar manner [21]. The focus of this
effort was modeling the networking and connectivity
aspects of the architecture. The HPSC architecture, which is
implemented with the MYRINET* protocol [22], consists
of nodes containing one or more processors interconnected
via a network of MYRINET multi-port switches. Addi-
tional extensions to the Ptolemy DE domain were created to
model the MYRINET protocol. As with the capability
developed on RASSP, the Ptolemy kernel is at the heart of
the simulation. Data and control packets flow between the
nodes over the network of switches using routing informa-
tion contained in each node’s network interface, called a
LANai. This tool, which uses the Ptolemy graphical user
interface, allows the user to define the loads on each of the

*NetSyn is a trademark of JRS Research Laboratories, Inc.

**PMW is a trademark of Omniview, Inc.

nodes to simulate the execution of algorithmic blocks, set
up an architecture of nodes and switches, and simulate the
performance. The primary goal of this capability to help
address questions of network topology and routing in terms
of how many switches, what type of switches, how should
they connected, and what is the best routing to most effi-
ciently utilize the network. Thus, it does not provide as
much fidelity in modeling the execution of the algorithms
on the architecture as other tools, but it does answer the
complex questions of data flow within the architecture.

5.2. RAMP

A tool developed by a team at General Electric Corporate
Research and Development, under the funding of Lockheed
Martin, has developed a tool called Real-time Algorithm
Mapper and Performance-analyzer, also known as RAMP
[23]. RAMP is a graphical tool for designing multi-proces-
sor based systems, which helps in evaluating the suitability
of architectures for implementing algorithms. It has a
graphical interface consisting of an algorithm window and
an architecture window. Much like the RASSP architectural
trade capability, the user maps the algorithmic blocks onto
the architecture. It provides an automatic routing capability,
using a shortest route assignment, for the initial flow of data
on the architecture. It provides the capability to import
algorithm topologies exported from Alta’s Signal Process-
ing Workstation (SPW). One disadvantage of RAMP is that
it does not easily allow the addition of models or modeling
at higher or lower levels of abstraction. The cost functions
are also a little constrained as they are not proportioned to
the amount of data being processed. A built-in discrete
event simulator is integrated into the tool and provides the
simulation capability for the mapped architecture.

RAMP has been used as a front end for the HPSC modeling
work. Although RAMP cannot model the MYRINET pro-
tocol at the desired level of abstraction, it can be used to
determine the initial routing information needed to imple-
ment a particular mapping on an architecture. RAMP
exports this information, which can then be imported into
the HPSC modeling capability and simulated using the
Ptolemy MYRINET models.

5.3. NetSyn

JRS Research Laboratories has developed their solution to
this problem with their Network Synthesis System, called
NetSyn [24]. NetSyn has similar capabilities as the other
tools, but one significant difference that it bases its algo-
rithm development on the Processing Graph Methodology
(PGM) [25]. All algorithms are expressed and implemented
in PGM, which is a standard means of expressing portable,
dynamic dataflow applications. The PGM graph, as it is
called, representing the algorithm is then mapped onto the
target architecture, which NetSyn can do automatically
(parallel scheduling) or allow the user to do manually. A
standard library of PGM functions are available for express-

ing the algorithms, and an architecture library of processors
and interconnects is also provided. NetSyn then performs a
performance simulation using its own simulation engine.
There is an integrated capability to view the results of the
simulation using various forms of a Gantt chart.

5.4. PMW

Omniview has developed a product called the Performance
Modeling Workbench, or PMW [26]. Although currently in
the alpha release, it has been used to do some performance
modeling on RASSP. PMW allows the user to create perfor-
mance models at a varying degrees of fidelity, in both hard-
ware and software. The basis for modeling is VHDL, which
enables PMW, in general, to have a finer level of granularity
in its models compared to Ptolemy, NetSyn, or RAMP.
There are a number of tunable parameters which can be
used to adjust the granularity of the model at the expense of
longer simulation times. The user defines the software and
hardware with block diagrams using their graphical inter-
face, with parameters which model the processing/commu-
nication requirements and capabilities. There is no true
mapping of an algorithm onto the architecture, but there is a
mapping of software onto the hardware. Thus, if the algo-
rithm is implemented completely in software, then the algo-
rithm to architecture mapping is essentially done as with
the other tools. Implementation of algorithmic blocks in
hardware requires a little more work, but is fully supported
by the modeling environment. PMW generates a VHDL
model of the mapped architecture, which is then simulated
on any VHDL simulator. Results are captured as the VHDL
simulation is performed, and PMW provides the ability to
view the results in a variety of forms and formats. A rich
modeling library is included with the tools, which is based
on the work done by Honeywell in developing their Perfor-
mance Modeling Library. A limitation of PMW is that it is
not easy to add additional models, only to change the
parameters of the existing models. PMW also requires
knowledge on how to use VHDL.

5.5. Other tools

The Alta Group has a tool called BONeS* [4], which is a
discrete event simulator. Other performance modeling tools
that use slightly different paradigms are Statemate* [27] by
i-Logix and OPNET* [28] by Mil 3, Inc. Each of these
tools emphasizes performance modeling of the intercon-
nects between the processor and processing nodes.

5.6. Instruction Set Simulators

Creating accurate performance models of new algorithmic
blocks can accomplished by several different means. Algo-
rithmic functions implemented in vendor or third party
libraries for target processors often provide performance

*The name is the registered trademark of the listed company.

metrics for their routines, and these can be used in creating
the performance models. It may also be possible to assess
the performance of commercial or custom routines by pro-
filing them on an instruction set simulator (ISS) or on a tar-
get board. An ISS is often available ahead of the new
processor that it simulates, and give a convenient means of
profiling individual routines. By their nature, an ISS can
become cumbersome and slow if the size of the simulation
is allowed to grow too large. ISSs are becoming more and
more sophisticated, and often can provide additional insight
into the utilization of a processor’s CPU and supporting
devices like DMA channels, caches, registers, and internal
memory. One excellent example of this is the Texas Instru-
ments TMS320C80 simulator [29]. Target boards are also a
good choice for profiling software routines, but are often
less available and require more setup to use. Nonetheless,
they provide a reliable and convenient method of profiling
code. In the absence of an ISS and a target board, some pro-
filing can be done on a host, such as a workstation or PC
with a debugger, especially when the software is imple-
mented in C or other high level language. While not ideal,
this can provide some good initial estimates of the compu-
tational needs of the algorithmic blocks.

A tool to help in the process of finding acceptable mappings
would be very useful. Often called multiprocessor schedul-
ers, these tools would help in determining a reasonable load
balance. As mentioned previously, NetSyn has such a capa-
bility. Parallel schedulers are usually coupled with code
generation capabilities, which are discussed in section 6.1.

6. Target Hardware Configuration

This step involves configuring target hardware to imple-
ment a particular algorithm. This problem is difficult to
solve in general, and is an area of relative weakness in the
development process. The goal of the performance analysis
is to make this step easier by providing candidate mappings
and architectural configurations that show great promise for
meeting the system needs. This step enables these options
to be evaluated more carefully by profiling on hardware. As
the design progresses, larger and large portions of the sys-
tem are prototyped on the target hardware. The prototyping
continues until the entire system has been implemented.

Several tools solve this problem for specific target hardware
architectures with varying degrees of success. Some of
examples of this capability are Rippen** [10] by Orincon
Technologies, DataFlo MP** [9] by Axiom, and Ptolemy
by the University of California, Berkeley as well as tools
from Hyperception, Visual Solutions [30], and Real Time
Signal Processing [31].

The goal of these tools to enable the rapid configuration and
prototyping of algorithms executing on an architecture, cap-
turing performance information. The performance informa-
tion allows the configuration to be evaluated and determine
where performance problems exist. The suite of tools for

visualizing the performance information is discussed in the
next section.

6.1. Code Generation

A class of tools supporting target hardware configuration
involves those for code generation. Code generation can be
implemented in a variety of ways. Most commonly, the user
creates an algorithm from a built-in library of functional
blocks, creates an architecture, and maps the execution of
the algorithm onto various architectural entities, as dis-
cussed in section 5. The role of the code generator is to cre-
ate the “glue code” needed to handle the passing of data
(transmission and reception) between algorithmic blocks,
both on the same processor or between processors, as
needed. The “glue code” also includes any set up or initial-
ization required for the processor and it also takes care of
necessary resource allocation and insures that the applica-
tion software routines (library functions) are called properly
and in the right order. The distinction between code genera-
tion and target hardware configuration is not well defined,
but in general, the later encompasses the first. Some code
generation schemes are general purpose and create C code
for the application software routines as well as for the glue
code. Others generate assembly code for the target proces-
sor. Code generation is very powerful and efficient in situa-
tions where it takes advantage of optimized application
libraries and glue code. Adherence to commercial or stan-
dardized APIs, as mentioned in section 4, is necessary for
code generation, but is good design practice anyway. These
APIs provide a standard set of routines needed to imple-
ment various resource allocations and pass data, which is
especially important in a heterogeneous multiprocessor sys-
tem.

Some code generation capabilities include the means to
automatically suggest a reasonable mapping of algorithmic
blocks onto the architecture. This automated mapping capa-
bility is called a multiprocessor scheduler or a parallel
scheduler. The goal of these tools is to search many possi-
bilities for mapping the algorithm onto the architecture, in
order to find one that is optimal in terms of speed, size, and/
or resource consumption. NetSyn has such a capability for
the processors and algorithmic blocks it supports. Ptolemy
has several code generation domains which have paralleliz-
ing schedulers which can find optimal schedules for certain
classes of situations. Its suite of code generation domains
can be used to generate C code or assembly code for several
common DSPs, namely the Motorola 56K and 96K families
and Texas Instruments TMS320C50.

6.2. Multiprocessor Debuggers

Another important group of tools for hardware profiling are
multiprocessor debuggers. In a multiprocessor system, it is
important to be able to have control over its execution,
whether it is a single processor, a cluster of closely coupled
processors, or a distributed system. Emulators are useful for

controlling the execution of processors, so that the proces-
sors can be commanded to run, single step, stop at break-
points, and view the status of system registers and memory.
With the advent of JTAG emulators that use serial scan
techniques, this control and observability can be extended
to clusters of processors. Data at different points in the
algorithm, stored in the decomposition step, can be used
here to compare results and determine where implementa-
tion problems exist. This technology is also useful in con-
trolling the individual processors on a multichip module or
on a complex processor like the TMS320C80 (five proces-
sors) or new quad-SHARC AD14060 MCM [32] from Ana-
log Devices, single chips with multiple processors. In order
to debug a multiprocessor system, you need control over the
processors so that each may be observed and controlled
independently so that interprocessor communication can be
debugged. Examples of this are White Mountain DSP’s
emulator JTAG emulator products [33] and accompanying
debuggers for the TMS320 family of processors and the
Analog Devices SHARC. At the system level, a need to
control large numbers of distributed processors is also
essential for similar reasons, where JTAG becomes too slow
to handle the volume of data. BBN is developing a product
called Total View* [34] which will allow distributed clus-
ters of multiprocessors to be debugged in a fairly non-intru-
sive fashion over the MYRINET.

7. Visualization of Performance and Goals of
Feedback

Many of the tools already described have an integrated
capability to display the results of the performance simula-
tions or the results of target hardware trials. A flexible capa-
bility to view the results in various ways is quite valuable.
However, the interpretation and visualization of the results
depends on the type and size of system being modeled.

Depending on the specific goals of the performance simula-
tions, it may be useful to be able to examine the behavior
exactly as it is modeled by the simulation. At this level, the
user sees great detail about what is going on at the level of
abstraction implemented by the models. This level of
abstraction is useful for synchronous systems where the
behavior of the system is periodic over some finite interval.
Here, optimizing performance over one interval automati-
cally provides the same performance over all time. Thus, by
definition, simulation over one interval (or a small number
of intervals for pipelined cases) is sufficient to characterize
the system and its performance. A Gantt chart, showing
activity or utilization as a function of time, provides enough
visualization for most needs. This type of capability is
available with the architecture trade and MYRINET model-
ing capabilities developed at Sanders.

*Total View is a trademark of BBN, Inc.

In many cases, the user may want to limit their view to a
particular subsystem or component in the system, or only
view “problem areas” that satisfy some criterion. The abil-
ity to “filter” the results to a limited scope can be very use-
ful, especially as the system increases in size. A hierarchial
approach to system optimization may be effective in some
applications, where subsystems optimized separately in the
system and a filtering capability on visualization can be
quite useful. Examples of this type of capability are a Gantt
chart that shows only selected activities, or a Gantt chart
that displays only those activities where contention or wait
time exceed a threshold.

As the system exhibits more and more dynamic behavior,
the system no longer satisfies the synchronous model, and
the repeat interval is no longer finite. Data reduction of the
collected performance metrics may be more effective than
viewing specific instances of behavior. Statistics on the per-
formance, such as average utilization or peak usage, may be
more useful. A distribution function or histogram, along
with mean and variances of various metrics may provide the
insight or criterion to determine whether the performance is
acceptable or not. Statistical interpretation of performance
metrics are more useful as the system model is exercised
over longer periods of time, as is done with Monte Carlo
approaches.

8. Summary

This paper has provided a narrative description of a process
for designing multiprocessor systems for signal processing
applications. Each step has been described, and a few tools
which help with each step have been introduced. Other
tools have been mentioned, but were not investigated in
depth. Additional details are available from the vendors’
web sites. There are clearly some areas of strength and
weakness in terms of tools support for this process, and
these have been summarized.

REFERENCES
1. Mathworks, 24 Prime Park Way, Natick, MA 01760 (http://

www.mathworks.com)
2. E. A. Lee, et al., University of California, Berkeley, The

Almagest, Volumes 1-4, Regents of the University of Califor-
nia, 1996. (http://ptolemy.eecs.berkeley.edu)

3. Khoral Research, Inc., 6001 Indian School Road, NE, Suite
200, Albuquerque, NM 87110 (http://www.khoral.com)

4. Alta Group, 555 N. Mathilda Avenue, Sunnyvale, CA 94086
(http://www.altagroup.com)

5. DSP Development Corporation, One Kendall Square, Cam-
bridge, MA 02139 (http://www.dadisp.com)

6. Hyperception, 9550 Skillman LB125, Dallas, TX 75243
(http://www.hyperception.com)

7. Mathsoft, Inc., 101 Main Street, Cambridge, MA 02142
(http://www.mathsoft.com)

8. Mentor Graphics Corporation, 8005 SW Boeckman Road,
Wilsonville, Oregon 97070 (http://www.mentorg.com)

9. Axiom Technology, Inc., 115 Murry Drive, Madison, AL

35758 (http://www.axiom.org)
10. Orincon Technologies, Inc., 9363 Towne Centre Drive, San

Diego, CA 92121 (http://www.orincon.com)
11. Synopsys, Inc., 700 East Middlefield Road, Mountain View,

CA 94043 (http://www.synopsys.com)
12. Momentum Data Systems, Inc., 1520 Nutmeg Place #108,

Costa Mesa, CA 92626 (http://www.mds.com)
13. Berkeley Design Technology, Inc., DSP Design Tools and

Methodologies, Volumes I and II, Fremont, California, 1995.
(http://www.bdti.com)

14. Message Pass ing In te r face S tandard (h t tp : / /
www.mcs.anl.gov/mpi/index.html)

15. Parallel Virtual Machine (http://www.epm.ornl.gov/pvm)
16. Active Message Interface, University of California, Berkeley

(http://now.cs.berkeley.edu/AM/active_messages.html)
17. MPI Fast Messages, University of Illinois at Urbana-Cham-

paign
(http://www-csag.cs.uiuc.edu/projects/comm/mpi-fm.html)

18. “IEEE Standard VHDL Language Reference Manual,” IEEE/
ANSI Standard 1076-1993, 1994.

19. “IEEE Standard Description Language Based on the Ver-
ilog(TM) Hardware Description Language,” IEEE Standard
1364-1995, 1995.

20. E. K. Pauer and J. B. Prime, “An Architectural Trade Capa-
bility Using the Ptolemy Kernel,” IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 1996.
(http://www.sanders.com/spard/publish.html)

21. E. K. Pauer, “High Performance Scalable Computing Perfor-
mance Modeling Using Ptolemy”, IASTED International
Conference on Modelling and Simulation, 1997.
(http://www.sanders.com/spard/publish.html)

22. Myricom, Inc., “Myrinet Link Specification,” Arcadia, Cali-
fornia, 1995. (http://www.myri.com)

23. RAMP, General Electric Corporate Research and Develop-
ment, P.O. Box 8, Schenectady, NY 12301
(http://www.crd.ge.com, moitrad@crd.ge.com)

24. JRS Research Laboratories, 1036 West Taft Avenue, Orange,
California, 92665

25. Processing Graph Method Standard
(http://www.ait.nrl.navy.mil/pgmt/pgm2.html)

26. Omniview, Inc., 100 High Tower Blvd., Suite 201, Pitts-
burgh, PA 15205

27. i-Logix, Inc., 3 Riverside Drive, Andover, MA 01810
(http://www.ilogix.com)

28. MIL 3, Inc., 3400 International Drive, NW, Washington, DC
20008 (http://www.mil3.com)

29. Texas Instrument TMS320C80 MVP Simulator
(http://www.ti.com/sc/docs/dsps/tools/c8x/sim.html)

30. Visual Solutions, Inc., 487 Groton Road, Westford, MA
01886 (http://www.vissim.com)

31. Real Time Signal Processing, Inc., 1715 - 27 Avenue N.E.
#1, Calgary, Alberta, T2E 7E1, Canada

32. Analog Devices, 7910 Triad Center Drive, Greensboro, NC
27409 (http://www.analog.com)

33. White Mountain DSP, Inc., 410 Amherst Street, Suite 325,
Nashua, NH 03063 (http://www.mwmedia.com/tpvs/
whitemtn/dsp/mtn-510.htm)

34. BBN Corporation, 150 Cambridge Park Drive, Cambridge,
MA 02140 (http://www.bbn.com:80/tv/TINDEX.html)

