
ke
m-
The
rs

in a
on

 a

si-
of
et-
k
8,
ed
 as
 in
on
n-
out
he
data
an
the
ets
he
n a
d
nd
he
rst
ine

HIGH PERFORMANCE SCALABLE COMPUTING PERFORMANCE MODELING USING
PTOLEMY

Eric K. Pauer
Sanders, a Lockheed Martin Company

Signal Processing Center
Nashua, NH 03061-0868

(603) 885-8358, Fax (603) 885-0631
pauer@sanders.com
1. INTRODUCTION

Many of today’s signal processing applications are becom-
ing more and more computationally intensive, requiring an
increasing number of processors to satisfy their needs.
Along with the larger number of processors, the bandwidth
needed to pass data among the processors has also
increased dramatically. In many classes of applications,
designing an architecture to satisfy the data passing require-
ments while maintaining cost and complexity at reasonable
levels is very challenging. An answer to these classes of
problems is the High Performance Scalable Computing
(HPSC) architecture. It consists of clusters of processing
nodes interconnected over a high performance network,
implemented with the Myrinet protocol. Application algo-
rithms are partitioned and mapped onto the various process-
ing nodes in the architecture for distributed execution. The
goal of this simulation work is to provide a performance
modeling capability to automate the evaluation of the rela-
tive performance of various architectural candidates with
respect to network design choices. In conceptualizing and
designing such systems, it will be important to have various
simulation capabilities to help in assessing tradeoffs and
making system design decisions. A performance modeling
capability allows the development team to quickly assess
the performance and impact of various design decisions.
The results of the performance simulation help in tailoring
an architecture and identifying a network topology and
routing scheme that best satisfies the system requirements
of the application.

2. HPSC AND MYRINET
The purpose of the HPSC architecture is to enable the
implementation of computationally intensive algorithms
with high data bandwidth requirements on a distributed
multiprocessor system. The philosophy behind HPSC is to
decouple the application software executing on the process-
ing nodes from the system software which passes data and
messages among the nodes. Data is passed between the
nodes over the Myrinet network [1], as depicted in a con-
ceptual diagram of the HPSC architecture (figure 1).

A processing node may contain programmable logic, li
an FPGA or ASIC, but often contains one or more progra
mable processors such as DSP or RISC processors.
HPSC architecture specifies how communication occu
between nodes, but does not specify what happens with
node. All processors within the same node share a comm
interface to the network, via a Myrinet device called
LANai.

The LANai is a programmable device, and takes respon
bility for coordinating the transmission and reception
data from the node to all other nodes over the Myrinet n
work using the Myrinet protocol. The Myrinet networ
consists of a topology of multi-port Myrinet switches (4,
or 16-port switches are most common), interconnect
together, with a LANai as an interface at each node,
shown in figure 2. The LANai sends data to other nodes
the system using routing defined in data synchronizati
tables (DST) residing in the LANai memory. The DST co
tains a list of entries, each one specifying information ab
a block of data to be sent. This information includes t
start address of the data within the node, the size of the
block, a list of port numbers for routing the data, and
index for the data at the destination node. When given
command to transmit, the LANai assembles data pack
using the information in the DST, and begins sending t
packets one after the other. Each data packet is give
header, which starts with the list of port numbers followe
by the size and index. The LANai transmits the header a
then body of the data packet containing the data block. T
first Myrinet switch receives the data, and examines the fi
port number in the header. It uses this number to determ

Node LANai

Node LANai

Node LANai

Node LANai

NodeLANai

NodeLANai

NodeLANai

NodeLANai

Myrinet

Network

Figure 1: HPSC Architecture and the Myrinet Network

 be
me
lu-

that
 be
e
e.

u-
ere
es
ns

ed
tive

or-
ord
ing
-

ize.
ther
 in
de

he
e-
ent
ate
 by
)

not
ity
er-
nt
h
ng
ks,
tput
which of its ports will send the data. This port number is
stripped from the packet, and the switch sends the rest of
the packet out the specified port, assuming that port is not
currently busy. This continues through a series of switches
until the data packet finally arrives at the LANai of the des-
tination node, at which time all port numbers in the header
have been stripped and used. On the receiving side, the
LANai also has a receive DST to specify the address and
size of each data block that it receives. The index sent along
with each data packet tells the receiving LANai which entry
in this DST to use. Once all data packets are received, the
LANai then transfers the data to the appropriate memory
locations. Myrinet is a high performance interconnect capa-
bility, with a network data rate of 160 Megabytes/second.

As alluded to in the previous discussion, there may be con-
tention within a switch where a port, that is currently busy
transmitting, receives a second data packet also needing to
use the same port. The switch responds by queuing the sec-
ond request, and sending a Stop control packet back
through the switched network to the originating LANai.
The LANai and one port on each of the switches, used to
route the packet up to the switch where the contention
occurred, are now idle but remain allocated. Once the port
becomes free, the switch sends a Go control packet to the
originating LANai and the transmission of the packet con-
tinues. Multiple requests for the same port are queued and
served in the order received. Control packets are small and
are not blocked like data packets, as they can be interleaved
if necessary over busy or blocked ports. Because of the pro-
pogating effect of port contention in a switch, these condi-
tions should be minimized as they will degrade the effective
bandwidth of the network.

3. GOAL OF PERFORMANCE MODELING

The first benefit of a performance modeling capability is
that it provides a means of evaluating candidate network
topologies without having to build them. As the number of
nodes and switches grow, it becomes more and more diffi-
cult to estimate or predict performance. Questions like how

many switches, what type of switches, how they should
interconnected, and what the DST should look like beco
more difficult to answer, and an automated means of eva
ating options becomes necessary. A second benefit is
the DST tables developed in the simulation can often
used directly to program the LANais to implement th
desired connectivity when the target hardware is availabl

The type of problems that are targeted by this type of sim
lation are applications that are synchronous in nature. Th
is a predictable flow of data, and the flow of the data do
not depend on the content of the data. Typical applicatio
of HPSC include synthetic aperture radar (SAR), infrar
search and track (IRST) systems, and space-time adap
processing (STAP) based problems. In addition, perf
mance modeling is useful when the customer cannot aff
the hardware to provide excess bandwidth and process
capability due to cost limitation or environmental con
straints, such as power consumption, weight, and/or s
Thus, performance modeling can be used to predict whe
system requirements will be met, and it is very useful
optimizing the size of the architecture required to provi
sufficient capability without an excess of hardware.

4. PERFORMANCE MODELING WITH
PTOLEMY

Ptolemy [2] is a software environment developed at t
University of California at Berkeley that supports heterog
neous system simulation and design using several differ
models of computation, each implemented in a separ
domain. The class of application problems addressed
HPSC falls into Ptolemy’s synchronous dataflow (SDF
domain, where the flow of data is predictable and does
change. However, the performance modeling capabil
uses the Discrete Event (DE) domain as its engine for p
formance simulation. The DE domain is a discrete-eve
simulator, which uses a model of computation in whic
tokens with time stamps, called particles, representi
events are passed among the simulation building bloc
called stars. Each star has one or more input and/or ou

Node LANai

Node LANai

Node LANai

Node LANai

NodeLANai

NodeLANai

NodeLANai

NodeLANai4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

16-port
Switch

Figure 2: HPSC Architecture Example

ff
nd-
rk

n in

is-
pro-
ral
 of
vior
te.

SC
a-
ct
e

ports that are used to pass the particles to other stars. In this
event-driven model of computation, a chronologically
sorted list of events is maintained, oldest first. The simula-
tor’s schedule examines the oldest event in the list, and in
general, executes the star where that particle resides (spe-
cial cases may exist for multiple-input stars). All of
Ptolemy has been developed in C++ using an object-ori-
ented software architecture to facilitate modularity and
extensibility. In addition, all of the source code for Ptolemy
is freely available, which facilitates adding extensions to
the tool. These attributes of Ptolemy enabled the develop-
ment of the extensions to support the HPSC performance
modeling needs.

5. EXTENDING PTOLEMY’S DE DOMAIN

Extensions to the DE domain, in the form of new stars and
particles, were created to support our specific Myrinet per-
formance modeling needs. As part of the HPSC effort, the
new stars and particles were developed to model the HPSC

architecture and Myrinet protocol. This effort leveraged o
of similar performance modeling work started here at Sa
ers under the RASSP program [3], in addition to the wo
done by the Ptolemy project.

The key components in the HPSC architecture are show
figure 3. These new stars include data sources (SourceN-
ode), processing nodes (Node), LANai interfaces (LANai),
and Myrinet switches (4/8/16-port Switches). The other
stars shown are used in hierarchial modeling, which is d
cussed in section 7. The stars can be considered virtual
totypes of the components, as they implement behavio
models at the appropriate level of abstraction. Each type
star has a group of settable states, which allow the beha
of the model to be adjusted or fine-tuned, as appropria
The models closely model the actual behavior of the HP
architecture and Myrinet protocol. However, approxim
tions to simplify the behavior were made when the impa
of the simplification was minimal when compared to th
savings in terms of simulation time and complexity.

Figure 3: Myrinet Performance Modeling Stars

pri-
l be

it
ady
ng
s
rst
in
e

ion
se
 a
ent
he
as
im-

hen
star,
rti-

next
b-
ntil
the
5.1. SOURCENODE AND NODE STARS

The SourceNode creates blocks of data at a periodic rate.
The SourceNode star can represent a sensor or a source of
data from another subsystem which is outside the scope of
the simulation. The size of the data blocks and their fre-
quency are settable using their state variables. Typically, the
SourceNode represents a separate node in the architecture,
and hence is connected to its own LANai. The Node star is
used to represent a processing node in the HPSC architec-
ture. It models the processing on the node at a fairly high
level of abstraction, treating the processing taking place on
the node as a single measurable task. Its state variables
include input and output data block sizes, a clock rate, and a
number of clock cycles needed to complete the processing
on that node. It is possible to have a more detailed behavior
model on the nodes, using hierarchical modeling which is
discussed later. Just as with the SourceNode star, the Node
star connects to a LANai star which acts as the interface
between the Node and the Myrinet network.

5.2. LANAI STAR

The LANai and Switch stars are responsible for modeling
the behavior of the Myrinet network. The LANai has states
such as: its clock rate, various latencies (initial transmit,
subsequent transmit, receive), local/node side data rate, net-
work data rate, packet header sizes, and transmit and
receive DST information. The DST information includes
the input packet sizes, output packet sizes, port numbers
used for the routing the packets, and destination packet
indices. The LANai can simultaneously transmit and
receive data from the Myrinet network. A state diagram of
the behavior of the LANai is given in figure 4. States are
shown with rounded rectangles, particles causing transi-
tions are shown in bold face, and decisions are shown in
diamonds. Two state variables (i and ignore) are modified

as a result of the transitions, and are shown where appro
ate. FB denotes a feedback particle whose purpose wil
clear in the next paragraph.

The transmit portion of the LANai remains free until
receives a signal from its processing node that data is re
to transmit, which in this model is represented by receivi
a NodeDataBlock particle. At this point the LANai move
into the transmit state where it begins transmitting the fi
(i = 1) of N data packets (DP) listed in its DST, shown
figure 5. Upon moving into the transmitting state, th
LANai star calculates a prediction of when the transmiss
of this packet will finish (time T), assuming the ideal ca
where no switch contention occurs. The LANai creates
special feedback particle (FB) on an internal feedback ev
queue time stamped with time T. The particle will cause t
Ptolemy kernel to revisit the star at time T. Once this h
been accomplished, the kernel returns back to the main s
ulation to process the next event in the system model. W
simulation progresses to time T, the kernel executes the
determines that the execution is due to this feedback pa
cle, and then causes transmission to commence for the
packet, if any (when i < N), assuming no contention pro
lems (ignore remains zero). This process continues u
there are no more packets to send (i = N), at which point
LANai star returns to the free state.

LANai free

LANai transmitting

(packet i of N)
LANai blockedignore = 0 ?i = N ?

FB

NodeDataBlock
STOP

GO

No

Yes

Yes

No
i++

i = 1
ignore++

FB

FB

ignore--

ignore--

ignore--

Figure 4: State Diagram of Myrinet LANai Behavior

Local port
(Node side)

Network port
(Network side)

Feedback queue:
T

LANai

data packet 1

Figure 5: LANai transmitting

ignore=0
i = 1

transmittingNodeDataBlock DP

 in

 of
ch
ts it
ed.
by
 all
de,
tion

Nai
h at

e
et-
ue
es.
ch
le it
the

and

 of
s,
e

ive
re
rt
ta-

his
n
e

t the
ns-
the
am
e-
will
ck
top
the

 the
e

 to
t the
ck

ort
ile
rt
g
ents
re-
Assume now that the packet encounters port contention in a
switch somewhere in its route. The LANai will be notified of
switch contention during transmission by receiving a Stop
control packet, as shown in figure 6a. The Myrinet protocol
dictates that once a network path has been established, it will
not be relinquished until the packet transmission is complete.
Thus, this contention will always occur early in the packet
transmission. When the LANai receives the Stop control
packet, it increments an ignore counter and moves into the
blocked state. It remains there until a Go control packet
arrives, indicating that transmission may resume, as shown
in figure 6b. The LANai then transitions back into the trans-
mitting state to restart the transmission of the packet. It
recalculates the time needed to transmit the packet, and cre-
ates another feedback particle, time stamped with the new
prediction T’, as shown in figure 6c. The original feedback
particle generated to indicate the completion of transmission
at time T is incorrect, and must be accounted for. When the
kernel revisits the LANai star due to the original (now
invalid) feedback particle, the LANai star ignores it based on
its ignore counter. This is possible because it is always true
that the second attempt at transmission will complete at a
later time than first predicted. Note from figure 4 that this

feedback particle may be processed while the LANai is
the blocked or transmitting state.

The receive portion of the LANai operates independently
the transmit portion. The receive side of the LANai is mu
simpler, and does not have any states. The control packe
receives affect the transmit side of the LANai, as describ
As far as incoming data packets, it records their arrival
using the destination index contained in the packet. Once
packets have been received, it notifies the processing no
and prepares to receive the next set of packets. No conten
is experienced here, as the switch connected to the LA
arbitrates the data packets and only allows one throug
time.

The LANai uses a Ptolemy input and output port for th
local side and a Ptolemy input and output port for the n
work side. Additionally, there is an internal feedback que
as previously mentioned to aid in moving among stat
Upon being executed, the LANai must determine whi
input port has a particle causing the execution, and hand
appropriately. Simultaneous particles (those which share
same time stamp) may occur on two or more input ports,
this case must be handled appropriately.

5.3. SWITCH STAR

The Myrinet switch star also captures and simulates much
the Myrinet behavior. Switches come in a variety of size
most commonly four, eight, or sixteen ports. As with th
LANai, each port in the switch has a transmit and rece
port, with the behavior of the transmit side being much mo
complex. The state diagram for an individual transmit po
on the Switch star is given in figure 7, using the same no
tion as for the LANai state diagram. For this discussion, t
port will be called transmit port A; it also has a companio
receive port A. The transmit port A starts out in the fre
state, as shown in figure 8a. When a data packet arrives a
switch on receive port B to be sent out transmit port A, tra
mit port A moves into the transmitting state. In this case,
DP B particle causes the transition in the state diagr
(where N = B). A feedback particle, with a time stamp corr
sponding with the expected time the packet transmission
be complete (time TA), is placed in the internal feedba
event queue. These actions are shown in figure 8b. If no S
control packets or other data packets are received in
interim (i.e. ignore and queued counters remain at zero),
kernel will return to this star at time TA as a result of th
feedback particle and transition the transmit port A back
the free state. The feedback particles are labeled so tha
switch can identify the particles in the common feedba
queue for the switch with a specific port.

In the switch, another data packet may arrive on receive p
C, which also needs to be sent out transmit port A, wh
transmit port A is still busy transmitting data for receive po
B. If this occurs, transmit port A stays in the transmittin
state but queues the request of receive port C and increm
its queued counter, as shown in figure 9. This action is rep

Local port
(Node side)

Network port
(Network side)

Feedback queue:
T

LANai

data packet 1

ignore=0
STOP

transmitting

Figure 6a: LANai in transmitting state and receives Stop
control packet, moving LANai into blocked state

Local port
(Node side)

Network port
(Network side)

Feedback queue:
T, T’

LANai

data packet 1

ignore=1

transmitting

Figure 6b: LANai in blocked state and receives Go control
packet, moving LANai back into transmitting state

Figure 6c: LANai back in transmitting state, with invalid-
feedback particle T and valid feedback particle T’

Local port
(Node side)

Network port
(Network side)

Feedback queue:
T, T’

LANai

data packet 1

ignore=1
GO

blocked

i = 1

i = 1

i = 1

he
rol
re
 on
ort
he
ns-

ort
at-
t
w
mit
te

ive
 N

port
time
ai
g
 the
ort
rt is
ta

e

sented by the DP X (data packet particle) transition which
loops back into the transmitting state in the state diagram.
DP X indicates that a data packet is arriving from other
receive ports on the switch to be sent out this transmit port.
In completing this action, the switch sends a Stop control
packet back to the originating LANai through transmit port
B to tell the LANai to suspend transmission. This Stop con-
trol packet is given appropriate routing so that it makes its
way back to the proper LANai. Control packets follow dif-
ferent rules with respect to switch contention; since the
Myrinet protocol does not allow them to be blocked, they are
interleaved with data packets if necessary in order to reach
their destination. Additional data packets arriving on other
ports (DP X), also needing to be sent out transmit port A, are
also queued in the same fashion and eventually serviced in
the order received.

At time TA, the feedback particle, indicating that transmit
port A has completed the transmission of the data packet for

receive port B, will cause the Ptolemy kernel to revisit t
Switch star. Assume for the moment that no Stop cont
packets were received for this port, implying that the igno
counter remained at zero. The data packet received
receive port C, that was queued, is waiting for transmit p
A (queued = 1). Transmit port A is now available, since t
transmission is complete. The first request in queue of tra
mit port A is now serviced, which in this case is receive p
C. The switch sends a Go control packet back to the origin
ing LANai through transmit port C to inform the LANai tha
the port contention in this switch, which blocked it, is no
gone and that it can begin transmission. Meanwhile, trans
port A moves into the waiting state, which is used to indica
that it is waiting to service the data packet arriving on rece
port C, as shown in figure 10a. In the state diagram, DP
now represents a data packet particle arriving on receive
C (N = C). This state is necessary because it takes some
for the Go control packet to reach the originating LAN
through the network, for the LANai to respond by restartin
transmission, and for the data packet to propagate back to
switch. When the data packet finally arrives on receive p
C, the queued counter is decremented and the transmit po
moved into the transmitting state, shown in figure 10b. Da

Port free

Port transmitting

Port waiting

Port blockedignore = 0 ?queued = 0 ?

No

Yes

Yes

No
FB

FBDP X
FB

DP N

STOP

DP X

DP N

DP X

ignore--

queued++

ignore--

queued++

queued++

queued++
ignore++

ignore--
queued--

GO

DP N (current packet) replaced by first request in the queue

Port B: free
ignore=0
queued=0
queue=empty

Port A: free
ignore=0
queued=0
queue=empty

Feedback queue:
empty

Switch

Figure 8a: Transmit Port A in the free state

data packet
Port B: free
ignore=0
queued=0
queue=empty

Port A: transmitting
ignore=0
queued=0
queue=empty

Feedback queue:
TA

Switch

Figure 8b: Transmit port A in the transmitting state, trans-
mitting data packet from receive port B

DP B DP B

Port B: free
ignore=0
queued=0
queue=empty

Port A: transmitting
ignore=0
queued=1
queue=C

Port C: free
ignore=0
queued=0
queue=empty

data packet

Switch

STOP

data packet

Figure 9: Data packet from receive port C is queued sinc
transmit port A is already busy transmitting

Feedback queue:
TA

DP C

Figure 7: State diagram of Myrinet Switch Port Behavior

ans-
h
are
 the

r to
he
ed,
ent

rti-
ore
ts a
ck

at

ov-

g

packets arriving from other than the receive port C are
queued as previously described.

The behavior is different when the transmission is inter-
rupted, which occurs when a Stop control packet comes back
on the on a receive port, shown in figure 11a. The Stop con-
trol packet causes the port to transition from the transmitting
to the blocked state, as shown in the state diagram and figure
11a. The Stop control packet is also passed along and sent
out transmit port B. The ignore counter is incremented so
that the feedback particle TA corresponding to the original
end of transmission prediction will be ignored. The data
packet transmission is suspended, and is queued on transmit
port A, as shown in figure 11b. In this case, the request is
placed at the head of the queue instead of being placed at the
end. Eventually, a Go control packet will be received on
receive port A indicating that transmission can resume (fig-
ure 11c), at which time the port will move into the waiting
state, and pass along the Go control packet to transmit port
B. When the data packet arrives on the receive port B, the
queued counter is decremented and transmit port A moves
into the transmitting state (figure 11d). It is possible for addi-

tional data packets, that need also need to be sent out tr
mit port A, to arrive from other receive ports in the switc
while it is in the blocked or waiting state. These requests
queued in the same manner as if they were received in
transmitting state.

Feedback particles for the port may cause the Switch sta
be revisited. If they are processed while the port is in t
blocked or waiting state, the ignore counter is decrement
and they otherwise are ignored because they repres
invalid end-of-transmission estimates. If the feedback pa
cles are processed while in the transmitting state, an ign
count of zero indicates that the feedback particle represen
valid end of transmission and results in the port moving ba

Port B: free
ignore=0
queued=0
queue=empty

Port A: transmitting
ignore=0
queued=0
queue=empty

Port C: free
ignore=0
queued=0
queue=empty

Switch

data packet

Feedback queue:
TC

Port B: free
ignore=0
queued=0
queue=empty

Port A: waiting
ignore=0
queued=1
queue=C

Port C: free
ignore=0
queued=0
queue=empty

Switch

GO

Figure 10a: Transmit port A is in waiting state as Go control
packet sent out transmit port C

Figure 10b: Transmit port A is in transmitting state, transmit-
ting data packet from receive port C

Feedback queue:
empty

DP C

DP C

data packet
Port B: free
ignore=0
queued=0
queue=empty

Port A: transmitting
ignore=0
queued=0
queue=empty

Feedback queue:
TA

Switch

Port B: free
ignore=0
queued=0
queue=empty

Port A: blocked
ignore=1
queued=1
queue=B

Feedback queue:
TA

Switch

data packet
Port B: free
ignore=0
queued=0
queue=empty

Port A: transmitting
ignore=1
queued=0
queue=empty

Feedback queue:
TA, TA’

Switch

STOPSTOP

DP B DP B

Figure 11a: Receive port A in the transmitting state and
receives Stop control packet

Figure 11b: Transmit port A moves into the blocked ste

Port B: free
ignore=0
queued=0
queue=empty

Port A: waiting
ignore=1
queued=1
queue=B

Feedback queue:
TA

Switch

GOGO

Figure 11c: Receive port A receives Go control packet, m
ing transmit port A into waiting state

Figure 11d: Receive port B receives data packet, movin
transmit port A into transmitting state

re-
ic
se
nta-
s a

cket
pre-
ri-
ed
at-
age
has
een
 to
as
his
les
ch

wn
ort
he
are
data
kets
ing
to the free state (no queued requests) or to the waiting state
when queued requests exist (queued > 0). If the ignore
counter is greater than zero, the particle is ignored, and the
ignore counter is decremented as it represents an invalid esti-
mate.

As with the LANai star, when the Switch star is executed, it
must determine which of its ports is causing the execution
(including the internal feedback queue) in order to properly
model the behavior. Each port on the Switch star has been
implemented with a Ptolemy input port and output port. To
help manage the complexity of the behavior of the Switch
star and its various ports, two C++ classes were developed.
The PortQueueEntry class is used to represent a request to
transmit out a particular port and saves information such as
where the packet came from and routing information needed
to send control packets. The PortInformation class maintains
the state of the port (free, transmitting, blocked, or waiting),
various counters (ignore and queued), and a queue of
requests for the port (PortQueueEntry objects). It helps in
determining the response of the port to various events (Go or
Stop control packets, new data packets, or feedback parti-
cles), and it also provides a convenient event logging inter-
face for the gantt tool, described in section 6. An instance of
the PortInformation class is created for each port in the
Switch star so that the behavior of the switch can be modeled
effectively. The use of C++ classes in this manner is consis-
tent with the object-oriented software architecture of
Ptolemy.

5.4. NEW PARTICLES

As mentioned in section 5.0, several new particles were c
ated for this performance modeling capability. A gener
Packet particle, derived from Ptolemy’s general purpo
Message particle class, was created. It provides a represe
tion of the basic structure of a Myrinet packet and serves a
pure virtual base class for the DataPacket and ControlPa
particles classes. The DataPacket particle provides a re
sentation of a typical Myrinet data packet, and allows a va
able body size. The ControlPacket particle is currently us
to represent both Stop and Go control packets. A NodeD
aBlock particle class was also created, using the Mess
class as its base as well. The NodeDataBlock particle
been used to represent the passing of blocks of data betw
the LANai and the processing node. Lastly, an extension
the manner in which Ptolemy handles feedback particles w
made to allow them to take on assigned integer values. T
was especially useful in the Switch star where the partic
could be given values corresponding to the port to whi
they were associated.

6. MYRINET MODELING EXAMPLES

An example model of a simple HPSC architecture is sho
in figure 12. There are three SourceNode stars, four 4-p
Switch stars, three Node stars, and six LANai stars. T
LANais connected to the top and bottom SourceNodes
each sending two data packets to the top Node and two
packets to the bottom Node. Each of these four data pac
are taking different routes. The middle SourceNode is hav

Figure 12: Simple Myrinet Modeling Example

et
g
e

is a
et.
 cre-

the
c-

he
g

on
ort
for
ical
lps
the
odes
nd 3
heir
ed
ro-

g-
ach
-
ch
ich

or a
n.
a single data packet sent by its LANai to the middle Node.
The states of the LANai stars have been set to reflect this
routing. In addition, two NotUsed stars have been used to
terminate the unused ports on the Switch stars.

This model was simulated with the performance modeling
extensions using the Ptolemy DE domain, with the results
being logged into a file. In order to more easily view and
interpret the results of the simulation, a gantt tool was devel-
oped. Figure 13 shows the display of the gantt tool for this
simulation. The gantt tool displays the activity on each
resource in rows over time (time is along the x-axis). There
is a row for each SourceNode generation of data, each
LANai transmit activity, each LANai receive activity, the
transmit activity for each port in every switch, the transmit
queue for each port in each switch, and the processing on the
Node. Thus, most of the stars need several rows to display
their behavior and performance. Rows are not displayed
when there is no activity, and also, the displaying of rows
may be disabled, as was done in this example for the
SourceNodes. The various activities have been color-coded
to facilitate viewing, but have been shown in gray scale here.
Yellow denotes a start up latency, blue indicates normal
transmission or reception of data, and green indicates pro-
cessing of data by the node. Problems are shown in orange
and red: orange indicates that one or more blocks have cur-
rently originated in the switch port and have caused queuing
of requests; red is used where switch ports or LANais are
idle due to blocks that occurred somewhere in the current
route path. There are also labels containing two integers, on
most activities. The first number indicates the data packet’s
relative position within the transmit DST in the LANai

where it was transmitted. This first number of the pack
label is different when it is displayed by the receivin
LANai, in which case it indicates the relative index of th
data packet in the receive DST. The second integer
unique global identification number assigned to the pack
These numbers are assigned sequentially as packets are
ated in a given simulation; no two data packets will have
same number. This identification number facilitates the tra
ing of a given packet through the gantt display from t
transmitting LANai, through the switches, to the receivin
LANai.

In this example, the gantt tool shows that port contenti
occurred three times on port 2 of switch 1, and twice on p
2 of switch 2, as a result of multiple data packets vying
the same transmit port. The gantt tool provides a graph
view of which packets are causing the contention, and he
in determining alternatives. The dependency between
reception of data packets and start of processing on the n
can also be seen. LANais 4 and 6, attached to Nodes 1 a
respectively, needed to receive four data packets before t
nodes could begin processing. In contrast, LANai 5 need
to receive only one data packet for its Node 2 to begin p
cessing, so it was able to start processing much earlier.

A more involved example of an architecture is shown in fi
ure 14. There are eight SourceNodes and eight Nodes, e
paired with a LANai, connected by grid-like topology of six
teen 4-port switches. This application requires ea
SourceNode to send a data packet to each Node, wh
means each SourceNode will send eight data packets f
total of 64 packets across the Myrinet network per iteratio

Figure 13: Gantt Tool Display of Simple Myrinet Modeling Example

This example is representative of a typical subsystem in a
distributed space-time adaptive application.

Figure 15 shows the results of this simulation for each
SourceNode to generate a block of data, which took approxi-
mately twenty seconds to complete on a Sun SPARCstation
10. A simulation of this size requires more activity rows than
can be shown at once; thus, only a subset of the rows are
shown. The switches were conveniently named so that their
names include their relative XY position within the topology.
In this example, there are a number of switches which are
experiencing serious contention problems. The performance
simulation is useful for determining where potential conten-
tion problems exist, and for examining potential solutions.
Other options to look at here would be having connectivity
from the bottom row of switches to the top row so that pack-
ets have more routing possibilities, or considering the use of
8-port switches. In most cases, such as this one, the designer
wants to make sure that the latency introduced by the net-
work is short enough so that it does not adversely affect the
system throughput requirements, without having a system
with an over-abundance of hardware.

Figure 14: HPSC Architecture with Multiple Layers of Switches

red
s
te.

i-
ed.
les
e
ns,

ves
s

 of
 of
m
es.
th
es,
ari-

lity
ons
eir
7. ROLE OF HIERARCHY IN PERFORMANCE
MODELING WITH PTOLEMY

To help in managing the simulation of large systems,
Ptolemy has a built-in hierarchial capability. Groups of stars
can be captured into a single entity called a galaxy, and can
be treated as a reusable component. This is useful in defining
systems where there are regular patterns in the topology. The
hierarchy is also useful for modeling the logical capability of
boards that are developed and built, and then used as funda-
mental building blocks in designing and developing a system
solution for an application. As previously mentioned, hierar-
chy can be useful in refining the performance simulation,
especially with respect to the processing nodes. More
detailed models of the processor nodes in terms of proces-
sors, buses, and memories can be developed, captured, and
integrated into this same modeling capability. A conceptual
example of using Ptolemy’s hierarchy capabilities is shown
in figure 16. The Arithmetic Processing Unit (APU) board
shown in the upper left window is a galaxy and consists of an
8-port switch with four processing nodes. Each processing
node (lower left) is also a galaxy that is in turn composed of
a node and a LANai. The lowest level representation of the
node has also been captured as a galaxy; the right window
shows its composition which includes four SHARC proces-

sors with private memories as well as two banks of sha
memory. Thus, this hierarchial modeling capability allow
different levels of abstraction, to be used where appropria

8. SUMMARY

A performance modeling capability to model HPSC arch
tectures and Myrinet using Ptolemy has been develop
These extensions take the form of new stars and partic
which implement the behavior of the Myrinet protocol in th
Ptolemy Discrete Event domain. By using these extensio
the designer may explore many implementation alternati
in terms of network topology and routing. A gantt tool ha
been developed to facilitate the viewing and interpretation
the performance results. The hierarchical capabilities
Ptolemy may be utilized to aid in building larger syste
models or in refining the behavior of the processing nod
In addition, this performance modeling approach wi
Ptolemy is quite extensible to other types of architectur
and network protocols and strategies, and can support a v
ety of system modeling needs. In summary, this capabi
enhances the ability of the designer to explore many opti
in order to find the HPSC architecture that best satisfies th
system requirements.

Figure 15: Gantt Display for HPSC Architecture with Multiple Layers of Switches

REFERENCES
1. Myricom, Inc., “Myrinet Link Specification,” Arcadia,

California, 1995.
2. E. A. Lee, et al., University of California at Berkeley,

The Almagest, Volumes 1-4, Regents of the University
of California, 1996.

3. E. K. Pauer and J. B. Prime, “An Architectural Trade
Capability Using the Ptolemy Kernel,” IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, 1996.

Figure 16: Examples of Hierarchical Performance Modeling within Ptolemy

	1. INTRODUCTION
	2. HPSC AND MYRINET
	3. GOAL OF PERFORMANCE MODELING
	4. PERFORMANCE MODELING WITH PTOLEMY
	5. EXTENDING PTOLEMY’S DE DOMAIN
	5.1. ��SOURCENODE AND NODE STARS
	5.2. ��LANAI STAR
	5.3. ��SWITCH STAR
	5.4. ��NEW PARTICLES

	6. MYRINET MODELING EXAMPLES
	7. ROLE OF HIERARCHY IN PERFORMANCE MODELING WITH ...
	8. SUMMARY
	REFERENCES
	1. Myricom, Inc., “Myrinet Link Specification,” Ar...
	2. E. A. Lee, et al., University of California at ...
	3. E. K. Pauer and J. B. Prime, “An Architectural ...

	HIGH PERFORMANCE SCALABLE COMPUTING PERFORMANCE MO...
	Eric�K.�Pauer
	Sanders,�a�Lockheed�Martin�Company
	Signal�Processing�Center
	Nashua,�NH�03061-0868
	(603) 885-8358, Fax (603) 885-0631
	pauer@sanders.com

