
rating
tem

an
reas of
ing,
cs of
d as

oped
r a
tion
Algorithm Analysis and Mapping Environment
for Adaptive Computing Systems

Eric K. Pauer, Paul D. Fiore, John M. Smith, Cory S. Myers
Sanders, a Lockheed Martin Company

P.O. Box 868, Nashua, NH 03061-0868
Phone: 603-885-8358 Fax: 603-885-0631

{pauer, pfiore, jmsmith, cory}@sanders.com

Our team is developing an integrated algorithm analysis and mapping environment for mig
a dataflow representation of a signal processing algorithm into an Adaptive Computing Sys
(ACS) consisting of field programmable gate arrays (FPGAs). This environment allows
designers to transform signal processing algorithms into FPGA-based hardware faster, by
order of magnitude, than is currently possible. Our approach has been to focus on three a
capability critical to the success of adaptive computing: algorithm analysis, algorithm mapp
and smart generators. These capabilities are taking advantage of the special characteristi
signal processing algorithms to reduce the time to field the ACS, and are being implemente
extensions to the Ptolemy design environment developed at the University of California,
Berkeley.

Figure 1: Quantization Noise versus Hardware Cost

Algorithm implementation for ACS requires careful consideration of the appropriate signal
representation and the costs of operations. The algorithm analysis capabilities being devel
on this program will reduce the effort required to find good ACS implementation choices fo
signal processing algorithm. The environment will provide algorithm designers with informa
Page 1

es of

m to

eam,
ur

hese
 of

ation

rent
lored
e, and
ize
S.

r

s will

tant
about operation counts, including adds, multiplies, and memory accesses, and with analys
quantization effects related to ACS implementations. For many DSP problems, reduced
precision arithmetic will maintain acceptable system performance. A mapping of an algorith
an FPGA architecture will be successful if the designer can limit wordlength growth without
sacrificing algorithm performance. Wordlength reduction introduces noise into the data str
so the designer must balance the need for an efficient implementation with output quality. O
environment supports both analytical and simulation-based wordlength optimization. With t
capabilities an algorithm designer will be able to quickly determine the appropriate number
bits for signal representations at all points in the design and to quantify the performance of
various implementation choices. Figure 1 shows an example of the relationship of quantiz
noise to hardware costs for a particular algorithmic dataflow graph.

Signal processing algorithm mapping for ACS involves the assignment of functions to diffe
processing elements. On this program we are developing mapping techniques for ACS tai
to signal processing. These capabilities include performance analysis, partitioning assistanc
automatic scheduling and partitioning. The scheduling and partitioning functions will recogn
the coarse-grain nature of signal processing dataflow graphs to optimize partitioning for AC

Current methods for logic generation for ACS are either built around libraries of functions o
around general-purpose logic synthesis. As part of this effort, we are implementing "smart
generators" that are extensions of the concept of a parameterized library. These generator
be tailored to signal processing functions and will include rules that capture specific
implementation techniques and trade-offs. For example, a smart generator for a complex
multiplier is able to trade between a three-multiplier implementation and a four-multiplier
implementation according to area and latency constraints. Additionally, we are providing
mechanisms to automatically generate both hardware and software interfaces for the resul
ACS. Our initial target system is a Xilinx XC4062XL board from Annapolis Micro Systems.

Figure 2: Adaptive Computing Functional Blocks (Stars)
Page 2

re

n for
ented

here
ns,

ing

ee
has

ols
tor. In
int

 The
The algorithm analysis, mapping, and logic generation capabilities are being developed as
extensions to Ptolemy. Ptolemy provides a well documented, object-oriented, open softwa
architecture with implementations in C++ and Java. Our extensions to Ptolemy are being
captured in a new ACS domain that separates the interface specification from implementatio
each signal processing functional block. The algorithms of interest to this project are repres
by dataflow graphs comprised of these functional blocks (shown in Figure 2), following a
synchronous dataflow model of computation. We are using a Corona/Core architecture, w
each block has a common interface known as the Corona, and one or more implementatio
known as the Cores. A retargeting mechanism allows the users change Cores and hence
implementation, which moves the dataflow graph between various simulation models (float
point, fixed point) and implementations (C code, VHDL code).

Figure 3: Winograd Discrete Fourier Transform (DFT) Dataflow Graph

Recently, these ACS tools have been used to automatically implement a Winograd DFT (s
Figure 3) as part of a channelized FSK receiver in ACS. The Winograd algorithmic structure
the minimum number of multiplications for any DFT approach, and is thus ideal for FPGA
implementation. The complete place and routed FPGA design is shown in Figure 4. The to
have also been used to develop an FPGA implementation of a high speed linear FM detec
both cases, our ACS tools were used to simulate the algorithm, select appropriate fixed po
representations, and generate the VHDL implementations. The final FPGA designs were
obtained by synthesizing the VHDL and performing place and route with commercial tools.
ACS domain is part of Ptolemy 0.7.2 (released October 1999) and includes these ACS
capabilities and demonstrations.
Page 3

rt
A

ation

 and the
Future work includes extending the tools to handle multi-rate dataflow, multi-FPGAs, suppo
for temporal and resource sharing in the optimization process, and support for multiple FPG
families. We are also planning on two more demonstrations: a military classification applic
and a high range resolution automatic target recognition problem.

Figure 4: Completed Design for 8-point Winograd DFT in Xilinx 4062 FPGA

Acknowledgments: Portions of this work were supported by the Defense Advanced Projects Research Agency (DARPA)
United States Air Force Research Laboratory (AFRL) under Contract No. F33615-97-C-1174.
Page 4

