Proc. IEEE Symposium on FPGAs for Custom Computing Machines (FCCM), Napa CA, Apr. 1999

Algorithm Analysis and Mapping Environment for Adaptive
Computing Systems: Further Results

Eric K. Pauer, Paul D. Fiore, John M. Smith
Sanders, a Lockheed Martin Company
P.O. Box 868, Nashua, NH 03061
pauer@sanders.com, pfiore@sanders.com, jmsmith@sanders.com

Extended Abstract

We are developing an integrated algorithm analy-
sis and mapping environment particularly tailored for
signal processing applications on Adaptive Computing
Systems (ACS). Our environment allows a designer to
map signal processing algorithms to an ACS faster, by
an order of magnitude, than is currently possible.

Our approach has been to focus on three areas of
capability critical to the success of adaptive comput-
ing and to integrate these capabilities into an open,
extensible software framework [1]. The development
of the three areas, algorithm analysis, algorithm map-
ping, and smart generators, are taking advantage of
the special characteristics of signal processing algo-
rithms to reduce the time to field the ACS. Figure 1
shows a conceptual view of our environment. These
capabilities are being implemented as extensions to
the Ptolemy design environment developed at the Uni-
versity of California, Berkeley [2].

Algorithm implementation for ACS requires careful
consideration of the appropriate signal representation
and the costs of operations. The algorithm analysis ca-
pabilities being developed on this program will reduce
the effort required to find good ACS implementation
choices for a signal processing algorithm. The envi-
ronment will provide algorithm designers with infor-
mation about operation counts, including adds, multi-
plies, and memory accesses, and with analyses of quan-
tization effects related to ACS implementations.

For many DSP problems, reduced precision arith-
metic will maintain acceptable system performance.
A mapping of an algorithm to an FPGA architecture
will be successful if the designer can limit wordlength
growth without sacrificing algorithm performance.
Wordlength reduction introduces noise into the data
stream, so the designer must balance the need for an
efficient implementation with output quality. Our en-
vironment supports both analytical and simulation-
based wordlength optimization. With these capabili-

Graphical Entry or Import from Matlab

Algorithm Analysis

Floating Point
Simulation

Bit With Analysis Algorithm
Noise Distrbution Analysis Rearrangement

Precision Analysis Fixed Point
Simulation

ignal Flow Graph
Algorithm Mapping
Performance
Modeling
Automatic
Scheduling
Performance Metrcs Partitioning and
Mapping
Alocated Funciions
Smart Generators
Generator

Selection

‘ I l Device Programming
[Twor] [erece | [tiraes |:>

Figure 1: Algorithm Analysis and Mapping Environ-
ment.

Atemaive Implementations

ties an algorithm designer will be able to quickly de-
termine the appropriate number of bits for signal rep-
resentations at all points in the design and to quantify
the performance of various implementation choices.

Signal processing algorithm mapping for ACS in-
volves the assignment of functions to different pro-
cessing elements. On this program we are developing
mapping techniques for ACS tailored to signal process-
ing. These capabilities include performance analysis,
partitioning assistance, and automatic scheduling and
partitioning. The scheduling and partitioning func-
tions will recognize the coarse-grain nature of signal
processing dataflow graphs to optimize partitioning
for ACS.

Current methods for logic generation for ACS are
either built around libraries of functions or around
general-purpose logic synthesis. As part of this ef-
fort, we are implementing “smart generators” [3] that
are extensions of the concept of a parameterized li-
brary. These generators will be tailored to signal pro-
cessing functions and will include rules that capture

— " it il
S o =
= i]
=l =l al o il
Spmiiel = =
T T
u
— 1 I
Rl - C]
z T e
E — i A Y i
I — = 21 i, L St ;
_ = L i |
} o e it ol -
FL gt

Figure 2: Binary FSK Receiver using Winograd FFT.

specific implementation techniques and trade-offs. For
example, a smart generator for a complex multiplier
is able to trade between a three-multiplier implemen-
tation and a four-multiplier implementation accord-
ing to area and latency constraints. Additionally, we
are providing mechanisms to automatically generate
both hardware and software interfaces for the resul-
tant ACS. Our target system is a Xilinx XC4062XL-
based board [4] from Annapolis Micro Systems [5].

All of the algorithm analysis, mapping, and logic
generation capabilities are being developed as exten-
sions to Ptolemy. Ptolemy provides a well docu-
mented, object-oriented, open software architecture
with implementations in C++ and Java. Our exten-
sions to Ptolemy are being captured in a new ACS
domain that separates the interface specification from
implementation for each signal processing functional
block. The algorithms of interest to this project are
represented by dataflow graphs comprised of these
functional blocks, following a synchronous dataflow
model of computation. We are using a Corona/Core
architecture, where each block has a common interface
known as the Corona, and one or more implementa-
tions, known as the Cores. A retargeting mechanism
allows the users change Cores and hence implementa-
tion, which moves the dataflow graph between various
simulation models (floating point, fixed point) and im-
plementations (C code, VHDL code).

Recently, these ACS tools have been used to au-
tomatically implement a Winograd DFT as part of
a channelized FSK receiver in ACS (Figure 2). The
Winograd algorithmic structure has the minimum
number of multiplications for any DFT approach [6],
and is thus ideal for FPGA implementation. The tools
have also been used to develop an FPGA implementa-
tion of a high speed linear FM detector (Figure 3). In
both cases, our ACS tools were used to simulate the
algorithm, select appropriate fixed point representa-
tions, and generate the VHDL implementations. The
final FPGA designs were obtained by synthesizing the

H!-Chh:l Ehﬂtﬁﬂh EH-

Figure 3: Linear FM Detector.

VHDL and performing place and route with commer-
cial tools. The next release of the ACS domain (May
1999) will be part of Ptolemy 0.7.2 and will include
these ACS capabilities and demonstrations.

Acknowledgements. Portions of this work were supported
by Sanders, a Lockheed-Martin Company internal research and
development funding, and by the Defense Advanced Projects
Research Agency (DARPA) and the United States Air Force
Research Laboratory (AFRL) under Contract No. F33615-97-
C-1174.

References

[1] E. Pauer, C. Myers, P. D. Fiore, C. M. Crawford, E. A. Lee,
J. A. Lundblad, and C. X. Hylands. Algorithm analysis
and mapping environment for adaptive computing system.
In Proc. Second Annual Workshop on High Performance
Embedded Computing (HPEC). MIT Lincoln Laboratory,
September 1998.

[2] Ptolemy home page, University of California, Berkeley.
http://ptolemy.eecs. berkeley.edu, 1999.

[3] P.D. Fiore, C. Myers, J. M. Smith, and E. Pauer. Rapid im-
plementation of mathematical and DSP algorithms in con-
figurable computing devices. In Proc. Configurable Comput-
ing: Technology and Applications, part of SPIE Intl. Sym-
posium on Voice, Video and Data Comm., November 1998.

[4] Xilinx Corporation. The programmable logic data book.
http://www.zilinz.com, 1999.

[5] Annapolis Microsystems. Wildfire: A family of reconfig-
urable computing engines. http://www.annapmicro.com,
1999.

[6] P. D. Fiore. Low complexity implementation of a polyphase
filter bank. Digital Signal Processing, A Review Journal,
8(2):126-135, April 1998.

