
 the
al
us
t-
ia
tion
on,
DF
an-

he
stic
tri-

s.

ss-
le,
ap-
een
p-
u-
ata.
m-
m-
ool
ine

AN ARCHITECTURAL TRADE CAPABILITY USING THE PTOLEMY KERNEL

Eric K. Pauer, Jonathan B. Prime
Sanders, a Lockheed Martin Company

Signal Processing Center of Technology
Nashua, NH 03061-0868

epauer@sanders.com, prime@sanders.com
ABSTRACT
A perennial problem in the process of developing signal
processing systems is identifying an architecture which
meets the computational and memory needs of the algo-
rithm yet is still affordable in terms of cost, size, and com-
plexity. To aid in making this decision, an architecture trade
tool, using the Ptolemy kernel, has been developed. The
purpose of this tool is to provide the user with an easy
mechanism of specifying a mapping of algorithmic func-
tional blocks onto an architecture, and simulating its perfor-
mance. The goal is to allow the user to quickly evaluate
many architectures and mappings at a high-level to deter-
mine whether or not they satisfy basic criteria, and warrant
further investigation. These criteria include computational
and memory requirements as well as other system metrics
(e.g. size, power, and reliability, etc.) which are often
important in selecting an architecture.

1. INTRODUCTION
In a typical system design (figure 1), an algorithm is devel-
oped and simulated to verify that its functionality satisfies
the system requirements. From this functional simulation of
the algorithm, a functional decomposition is performed by
refining the algorithm into more fundamental functional
blocks, as necessary. Once the functionality has been suc-
cessfully simulated and decomposed, a performance simu-
lation of the refined algorithm running on one or more
candidate architectures is needed. The user defines a func-
tional mapping of the refined algorithm onto an architec-
ture, creates and executes a performance model, and then
interprets the results. This process is repeated until the sim-
ulation yields results which meet the system requirements.

In order to facilitate this process, an architectural trade tool
was developed. This tool provides a capability to define an
architecture, assign a functional mapping, synthesize and

This work was performed by Sanders, a Lockheed Martin Com-
pany, as part of the Sanders RASSP program under contract
N00014-93-C-2172 to the Naval Research Laboratory, 4555 Over-
look Avenue, SW, Washington, DC 20375-5326. The Sponsoring
Agency is: Advanced Research Projects Agency, Electronic Sys-
tem Technology Office, 3701 North Fairfax Drive, Arlington, VA
22203-1714. The Sanders RASSP team consists of Sanders,
Motorola, Hughes, and ISX.

execute a performance model, and provide feedback on
results. The architectural trade tool starts with a function
representation of the algorithm using the Synchrono
Dataflow (SDF) domain of Ptolemy[1]. Ptolemy is a sof
ware environment developed at the University of Californ
at Berkeley that supports heterogeneous system simula
and design using a several different models of computati
each implemented in a separate domain. In the S
domain, algorithms are represented using data flow sem
tics comprised of functional blocks, also calledstars. The
SDF domain handles a class of algorithms in which t
schedule, or order of execution of the stars, is determini
and can be determined at compile time. The Ptolemy dis
bution provides a rich library of SDF stars for algorithm
development, and it is straightforward to create new star

2. ARCHITECTURE MODELING
Once the functionality of the algorithm has been succe
fully verified and a SDF domain representation is availab
the process of investigating different architectures and m
pings can begin. Because the class of algorithms has b
limited to the SDF domain, it is possible to completely se
arate the functional simulation from the performance sim
lation because the schedule does not depend on the d
This assumption has the advantage of simplifying the co
plexity of the simulation and decreasing the time to co
plete a performance simulation. The architectural trade t
uses the Ptolemy Discrete Event (DE) domain as its eng

System Requirements

Architecture DefinitionAlgorithm

Algorithm Refinement

Functional

 and EntryFunctional Simulation

(functional decomposition)

and Description

Performance Model

Mapping

Performance Simulation

Synthesis

Profiler
Figure 1: Steps in a typical system design
FromProc. of the 1996 IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), Copyright IEEE 1996.



ral
he
ar
 In
go-
ws
ata
r to
the
 pro-
 pro-

e
he
ap-
n-
E
or,

nc-
 is

the
put
od-
F

and
tion
ory
for
ata

 are
ntal
ost
ry

er
on
and
ult
lly

Figure 2: Assignment of functional mapping onto an architecture
for performance modeling. The DE domain uses a model of
computation in which tokens with time stamps, calledpar-
ticles, representing events are among the stars. Extensions
to the DE domain, in the form of new stars and particles,
have been created so that performance models can be
defined and simulated.

Generic performance level models of various architectural
entities have been implemented as DE stars: processors,
busses, data sources, and data sinks. These stars are param-
eterizable and serve as the basis for models of specific hard-
ware devices. TheBus star is characterized by the bus
bandwidth and the number of simultaneous users that are
allowed. It models bus contention, and currently imple-
ments a first-come first-serve approach to bus usage, with-
out preemption. TheProcessor star is characterized by a
clock rate, an input transfer rate, an output transfer rate, and
a memory size. This star simulates the software running on
the processor at a performance level and models the passing
of data into and out of the processor. TheSource star simu-
lates the availability of data at a specified rate and block
size, and is the source of the data in the simulation. This
star can simulate the generation of any type of data (floating
point, fixed point, complex, etc.). TheSink star acts as the
destination for processed data, and can represent an inter-
face to another system or possibly a user display.

As previously mentioned, these stars serve as generic tem-
plates which can be used to create models of specific hard-
ware. For example, a model of digital signal processors,
like the i860 and SHARC, have been created from the Pro-
cessor star, and standard busses and interconnects, like the
VME bus and Raceway, have been created from the Bus
star. Additional processor, bus/interconnect, data source,
and data sink hardware models can be easily created by
instantiating these templates and filling in the necessary
parameters.

3. SPECIFYING AN ARCHITECTURE AND A
MAPPING

Using these architectural entities, the user can define an
architecture and then specify a functional mapping onto the
architecture. In order to provide an easy means of defining
architectures and specifying mappings, a custom graphical

user interface was developed as part of the architectu
trade tool. As shown in figure 2, the left window depicts t
SDF dataflow representation of the algorithm in a simil
fashion as the Ptolemy interactive graphical interface.
this case, an implementation of the Gram-Schmidt ortho
nalization process has been used. The right window sho
the architecture consisting of processors, busses, d
sources, and data sinks. The left window allows the use
select one or more SDF stars, and the right window lets 
user assign the execution of the selected SDF stars to a
cessor. Once the user has assigned all SDF stars to the
cessors in the architecture, the mapping is complete.

4. PERFORMANCE MODEL SYNTHESIS AND
SIMULATION

A performance-level simulation of the architecture with th
specified functional mapping can now be performed. T
architectural trade tool uses the architecture model, m
ping, and the SDF representation of the algorithm to sy
thesize and simulate a performance model in the D
domain. This performance model includes Bus, Process
Sink, and Source stars as well as one or more DEFunction
stars. One of these Function stars is created for each fu
tional star in the SDF representation of the algorithm, and
mapped to its assigned Processor star accordingly.

The Function star is essentially a performance model of 
SDF star that it represents, having the same number of in
and outputs as its SDF counterpart. The Function star m
els the computational load (or execution time) of the SD
star, its memory usage, and data block sizes for inputs 
outputs. Cost functions are used to represent the execu
time and memory usage. These processing and mem
cost functions consist of two terms: one which accounts 
overhead and the other which is related to the amount d
processed per execution of the block. The cost functions
expressed using arithmetic operations and transcende
functions, and are obtained by profiling the code on the h
or target processor, using a specified value for libra
implementation of the function, estimation, or by oth
means. The accuracy of the performance simulati
depends directly on the accuracy of the cost functions, 
in general, obtaining these cost functions can be a diffic
problem. The cost functions for an SDF star are typica



nes
tion
ard

cle
 star,
s a
ti-
iest
ck
sed
ad-

par-
tion

for-
ary
lish-
ars,
ri-
nd
ge
. At
ys
m-
 bus-
e

ify

e is
et-
di-
n,

 the
-
are,
,
em
an-
r-

Figure 3: Gantt chart showing processor and bus utilization over time
unique for each different type of processor. If processor-
specific cost functions are not available, default cost func-
tions are used. Thus, when creating new Processor stars,
more accurate simulations will result if processor-specific
cost functions are provided for the SDF stars of interest.

In addition to the new DE stars, this performance simula-
tion capability required the development of two new parti-
cles. ADataBlock particle represents a block of data in the
simulation and is passed among Function, Processor,
Source, and Sink stars. This particle contains information
concerning the amount and type of data it represents as well
as information on the destination of the data. AResource-
Block particle is used by the Function stars to request a
specified amount of processing cycles and memory from
their Processor star. The DataBlock and ResouceBlock par-
ticles are essential for modeling data flow as well as
resource contention.

The Function star executes once it has received all of the
data that it needs for each of its inputs. Using the perfor-
mance model cost functions, a Function star creates a
ResourceBlock particle requesting a specific number of
processing cycles and amount of memory to execute the
SDF function that it represents. This ResourceBlock parti-
cle given a time stamp with the current simulation time and
is passed to the corresponding Processor star. The Processor
star, using a first-come first-serve approach, determines the
earliest time at which the resources are available, and then
uses this time to calculate when the requested execution
will be completed. The Processor star then sends a Resour-
ceBlock particle back to the Function star with a time stamp
indicating the completion time of the execution. Once the
Function star receives this ResourceBlock particle, it cre-
ates an appropriate DataBlock particle for each of its out-
puts using the same time stamp. The Function star also
annotates each DataBlock particle with the ultimate desti-
nation of the data (another Function or Sink star), and sends
it along to its Processor star.

Based on the mapping specified by the user, the Processor
star has knowledge of which Function stars have been
mapped to it. Whenever a DataBlock particle is received

from one of its Function stars, the Processor star exami
the particle to see if it needs to be sent to another Func
star on the same processor or if it needs to be sent onw
to another Processor or Sink star. If the DataBlock parti
is sent outside a processor to another Processor or Sink
it gets there via one or more Bus stars. A Bus star use
simple model--it simply rebroadcasts any DataBlock par
cle it receives to all stars that connected to it at the earl
available time. Source stars discard all received DataBlo
particles, Sink stars consume DataBlock particles addres
to them and discard all others, and other Bus stars rebro
cast the particle. Processor stars accept only DataBlock 
ticles that are addressed to one of their mapped Func
stars; all other DataBlock particles are ignored.

Thus, the architectural trade tool creates the entire per
mance model for the DE domain, creating all necess
Source, Processor, Sink, Bus, and Function stars, estab
ing the necessary dependency information among the st
and initiating the simulation. As the model simulates, va
ous profile information is collected: the execution start a
stop times for all Function stars, the memory and I/O usa
on all Processor stars, and the bus traffic on all Bus stars
the end of the simulation, a Gantt chart (figure 3) displa
the execution of functional blocks on each processor, me
ory and I/O usage, and the data being passed across the
ses. This display allows the user to pictorially view th
performance of the architecture and mapping to ident
bottlenecks as well as underutilized resources.

5. SYSTEM METRICS
In selecting an architecture and a mapping, performanc
usually very important. However, certain other system m
rics must often be considered as well. As a result, in ad
tion to the Gantt chart provided after each simulation ru
the architectural trade tool also gives some feedback on
following system metrics[2]: function, environment, inter
faces, schedule, cost, processor, interconnect, softw
size, weight, power, reliability, testability, maintainability
fault tolerance, scalability, and standards. These syst
metrics are estimated using simple models with stored m
ufacturer specifications, historical data, and certain info



s to
se

ro-
, or
la-
em
 to
la-

sti-
de
ng
he
s
e
uld

ge
ld
ock
em
al-
l-
the
la-

e.

ve-
la-
es.
and
ture
ce
ail-
re a
ro-
c-

an

ty

P
ce,

l-
,”
nd

i-
to

n-
mation from the mapping and performance simulation. The
user provides system specifications for each of these met-
rics, in terms of minimum, nominal, and maximum values.
In addition, the user also specifies the relative importance of
the metrics to each other using a numeric weighting.

The estimated system metrics are graphed against the given
system specifications using a thermometer bar graph dis-
play, as shown in figure 4. The height of the individual ther-
mometer bar denotes the relative importance assigned to
each metric. All thermometers are normalized so that the
center matches the nominal specified value for each metric.
A thermometer bar filled in to the left of center indicates
that the system metric does not meet the nominal value
while a bar reaching to the right of center shows that the
nominal value has been satisfied. Some of the metrics are
displayed using a reverse scale so that the thermometers are
consistent in showing shortfalls--a value to the left of center
always indicates a shortfall, regardless of whether the actual
numeric value is lower or higher than the nominal value
(e.g. power versus reliability). The display has the option of
showing the minimum and maximum specification values
for the metrics as a range around the nominal value.
Because the reported metric values are estimates, a measure
of the relative accuracy of the calculations can also be
shown as a range around the reported metric. The purpose
of these estimates is to provide a first level measure of sys-
tem metrics to aid in selecting an architecture instead on
concentrating entirely upon the performance results.

6. ARCHITECTURE AND MAPPING TRADES
The goal of this tools is to allow the user to quickly explore
as many different combinations of mapping and architec-
tures as possible in order to find that one that best meets

their needs. The user can easily make some modification
the mapping or the architecture and re-simulate. The
changes may include mapping a function to a different p
cessor, changing to a different type of processor or bus
adding additional processors and busses. After re-simu
tion, in less than a minute a new Gantt chart and syst
thermometer is available. This capability allows the user
check out a number of possible configurations in a re
tively short period of time.

7. FUTURE WORK AND SUMMARY
There are several areas that warrant further work or inve
gation to improve the capabilities of the architectural tra
tool. An automated or semi-automated means for profili
functional blocks on different processors, to determine t
cost functions, and for performing functional mapping
would be very useful capabilities[3,4]. In addition, th
models implemented by the Bus and Processor stars co
be improved by allowing other types of resource usa
besides first-come first-serve. Architectural modeling cou
also be enhanced by implementing a shared memory bl
as an architectural entity. The sophistication of the syst
metrics calculations could be increased by utilizing speci
ized tools for specific calculations (e.g. reliability, fault-to
erance, etc.). Lastly, a graphical mechanism to facilitate 
comparison of the results of several performance simu
tions would also be helpful in finding the best architectur

The architectural trade tool provides the user with a con
nient means of performing high-level performance simu
tions of functional mappings onto candidate architectur
The user takes an SDF representation of their algorithm 
defines a mapping onto an architecture, and the architec
trade tool creates and runs a DE domain performan
model using the Ptolemy kernel. Since the results are av
able in a matter of seconds, the user can easily explo
number of architectures and mappings. Thus, this tool p
vides the user with the capability to explore many archite
tures and architectural mappings for their algorithm th
previously possible.

REFERENCES
1. E. A. Lee, et. al., University of California at Berkeley,

The Almagest, Volumes 1-4, Regents of the Universi
of California, 1995.

2. F. Shirley and R. Bassett, “Architectures for a RASS
Signal Processor,” Second Annual RASSP Conferen
1995.

3. J. L. Pino and E. A. Lee, “Hierarchical Static Schedu
ing of Dataflow Graphs onto Multiple Processors
International Conference on Acoustics, Speech, a
Signal Processing, 1995.

4. J. L. Pino, T. M. Parks, and E. A. Lee, “Mapping mult
ple Independent Synchronous Dataflow Graphs on
Heterogeneous Multiprocessors,” IEEE Asilomar Co
ference on Signals, Systems, and Computers, 1995.

Figure 4: System Thermometer Display


	ABSTRACT
	1. INTRODUCTION
	2. ARCHITECTURE MODELING
	3. SPECIFYING AN ARCHITECTURE AND A MAPPING
	4. PERFORMANCE MODEL SYNTHESIS AND SIMULATION
	5. SYSTEM METRICS
	6. ARCHITECTURE AND MAPPING TRADES
	7. FUTURE WORK AND SUMMARY

	REFERENCES
	1. E. A. Lee, et. al., University of California at...
	2. F. Shirley and R. Bassett, “Architectures for a...
	3. J. L. Pino and E. A. Lee, “Hierarchical Static ...
	4. J. L. Pino, T. M. Parks, and E. A. Lee, “Mappin...

	AN ARCHITECTURAL TRADE CAPABILITY USING THE PTOLEM...
	Eric�K.�Pauer,�Jonathan�B.�Prime
	Sanders,�a�Lockheed�Martin�Company
	Signal�Processing�Center�of�Technology
	Nashua,�NH�03061-0868
	epauer@sanders.com,�prime@sanders.com


